首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an ultrafast route for a controlled, toggle switching of magnetic vortex cores with ultrashort unipolar magnetic field pulses. The switching process is found to be largely insensitive to extrinsic parameters, like sample size and shape, and it is faster than any field-driven magnetization reversal process previously known from micromagnetic theory. Micromagnetic simulations demonstrate that the vortex core reversal is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses. Specific combinations of field-pulse strength and duration are required to obtain a controlled vortex core reversal. The operational range of this reversal mechanism is summarized in a switching diagram for a 200 nm Permalloy disk.  相似文献   

2.
The magnetic vortex with in-plane curling magnetization and out-of-plane magnetization at the core is a unique ground state in nanoscale magnetic elements. This kind of magnetic vortex can be used, through its downward or upward core orientation, as a memory unit for information storage, and thus, controllable core switching deserves some special attention. Our analytical and micromagnetic calculations reveal that the origin of vortex core reversal is a gyrotropic field. This field is induced by vortex dynamic motion and is proportional to the velocity of the moving vortex. Our calculations elucidate the physical origin of the vortex core dynamic reversal, and, thereby, offer a key to effective manipulation of the vortex core orientation.  相似文献   

3.
吕刚  曹学成  张红  秦羽丰  王林辉  厉桂华  高峰  孙丰伟 《物理学报》2016,65(21):217503-217503
针对坡莫合金纳米圆盘中的单个磁涡旋结构,采用微磁学模拟研究了磁涡旋极性翻转过程中的局域能量密度.磁涡旋的极性翻转通过与初始涡旋极性相反的涡旋与反涡旋对的生成,以及随后发生的反涡旋与初始涡旋的湮没来实现.模拟结果显示当纳米圆盘样品中局域能量密度的最大值达到一临界值时,磁涡旋将会实现极性翻转,其中交换能起主导作用.基于涡旋极性翻转过程中出现的三涡旋态结构,应用刚性磁涡旋模型对局域交换能量密度进行了理论分析.通过刚性磁涡旋模型得到的磁涡旋极性翻转所需的局域交换能量密度的临界值与模拟结果符合得较好.  相似文献   

4.
The spin-transfer effect is investigated for the vortex state of a magnetic nanodot. A spin current is shown to act similarly to an effective magnetic field perpendicular to the nanodot. Then a vortex with magnetization (polarity) parallel to the current polarization is energetically favorable. Following a simple energy analysis and using direct spin-lattice simulations, we predict the polarity switching of a vortex. For magnetic storage devices, an electric current is more effective to switch the polarity of a vortex in a nanodot than the magnetic field.  相似文献   

5.
We present time-resolved x-ray images with 30 nm spatial and 70 ps temporal resolution, which reveal details of the spatially resolved magnetization evolution in nanoscale samples of various dimensions during reversible spin-torque switching processes. Our data in conjunction with micromagnetic simulations suggest a simple unified picture of magnetic switching based on the motion of a magnetic vortex. With decreasing size of the magnetic element the path of the vortex core moves from inside to outside of the nanoelement, and the switching process evolves from a curled nonuniform to an increasingly uniform mode.  相似文献   

6.
金伟  刘要稳 《中国物理 B》2010,19(3):37001-037001
Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.  相似文献   

7.
Ultrafast magnetic processes are of great scientific interest but also form the basis of high density magnetic recording applications. We demonstrate the uniqueness of time resolved, high resolution magnetic X-ray microscopy, and show that the motion of a magnetic vortex core can be imaged. The vortex core direction is hidden to most experimental techniques, but has a decisive influence on the dynamics of the magnetic structure.We imaged the switching of a ferromagnetic nanostructure by a spin polarized current pulse using time resolved X-ray microscopy. As opposed to the common uniform switching process due to Néel and Stoner–Wohlfarth, the magnetization in spin injection devices does not switch uniformly, but involves the motion of a magnetic vortex. To cite this article: Y. Acremann, C. R. Physique 9 (2008).  相似文献   

8.
Switching behaviors of magnetic vortex cores under external magnetic field in submicron circular permalloy disks have been systematically studied by using micromagnetic simulations. Simulation results show that the vortex core is stable in out-of-plane field even when it is located at the edge of the disk. The out-of-plane switching field Hsw is strongly dependent on the thickness of the disk. The core polarity and the vortex chirality can be modulated simultaneously on purpose by using a tilted field far smaller than the out-of-plane switching field Hsw. Moreover, it is found that the core polarities in asymmetric disks do not follow the direction of the z projection of the external saturation field.  相似文献   

9.
A magnetic vortex core in a ferromagnetic circular nanodot has a resonance frequency originating from the confinement of the vortex core. By the micromagnetic simulation including the spin-transfer torque, we show that the vortex core can be resonantly excited by an ac (spin-polarized) current through the dot and that the resonance frequency can be tuned by the dot shape. The resistance measurement under the ac current successfully detects the resonance at the frequency consistent with the simulation.  相似文献   

10.
Hua-Nan Li 《中国物理 B》2022,31(9):97501-097501
The influence of Dzyaloshinskii-Moriya interaction (DMI) on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated. The simulation results show that DMI plays a vital role in vortex core reversal, including reversal current density, reversal velocity and reversal time. Under the influence of DMI, magnetic vortices still reverse polarity through the nucleation and annihilation of vortex and anti-vortex, with some peculiar characteristics. These results open up new possibilities for the application of magnetic vortex-based spin-transfer encryption nano-storage.  相似文献   

11.
孙明娟  刘要稳 《物理学报》2015,64(24):247505-247505
提出了一种特殊自旋阀结构, 其极化层(钉扎层)磁矩沿面内方向, 自由层磁矩成磁涡旋结构. 自由层在形状上设计成左右两边厚度不同的阶梯形圆盘. 微磁学模拟研究发现, 通过调控所施加的高斯型脉冲电流的大小、方向和脉冲宽度, 可以实现磁涡旋的不同旋性、不同极性的组态控制. 分析了该结构中电流调控磁涡旋旋性和极性的物理原因和微观机理.  相似文献   

12.
Symmetry classification of the magnetic vortices and skyrmions has been suggested. Relation between symmetry based predictions and direct calculation has been shown. It was shown that electric dipole moment of the vortex is located inside the small vortex core. The antivortices and antiskyrmions do not carry the total core electric dipole induced by the flexomagnetoelectric interaction in the hexoctahedral cubic crystal. The volumetric bound electric charge is distributed around the core. Switching of the core electric dipole direction produces the switching of the core magnetization or vortex chirality and vice versa. The vortices and skyrmions with time-invariant enantiomorphism have two degenerative states: clockwise and counterclockwise state.  相似文献   

13.
We report an additional reversal mechanism of magnetic vortex cores in nanodot elements driven by currents flowing perpendicular to the sample plane, occurring via dynamic transformations between two coupled edge solitons and bulk vortex solitons. This mechanism differs completely from the well-known switching process mediated by the creation and annihilation of vortex-antivortex pairs in terms of the associated topological solitons, energies, and spin-wave emissions. Strongly localized out-of-plane gyrotropic fields induced by the fast motion of the coupled edge solitons enable a magnetization dip that plays a crucial role in the formation of the reversed core magnetization. This work provides a deeper physical insight into the dynamic transformations of magnetic topological solitons in nanoelements.  相似文献   

14.
We investigate the dependence of the switching process on the perpendicular magnetic anisotropy(PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions(P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.  相似文献   

15.
Because of strong flux confinement in mesoscopic superconductors, a "giant" vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transition--proving that the formation of a giant vortex can also be detected by magnetometry.  相似文献   

16.
We investigate the influence of damping constant on the dynamics process of the magnetic vortex in submicron-size permalloy disks by micromagnetic simulations and analytical calculations. Both of them reveal that damping constant influences the trajectory of vortex core gyrotropic motion strongly. Comparing with the case of no damping constant, the steady-state trajectory of vortex core motion becomes ellipse as the amplitude of the oscillating magnetic filed is small. The ellipse becomes more slab-sided and tilting with increasing of damping constant, and the tilting direction is also dependent on the vortex core polarization. As the amplitude of the magnetic field increases to a value, the polarization of the vortex core will reverse and a new vortex with opposite polarization will be produced. With increasing of damping constant, the minimum oscillating magnetic field amplitude HS0 that can reverse the polarization of the vortex core increases proportionally.  相似文献   

17.
We investigate the dynamics of out-of-plane (OP) vortices, in a 2-dimensional (2D) classical Heisenberg magnet with a weak anisotropy in the coupling of z-components of spins (easy plane anisotropy), on square lattices, under the influence of a rotating in-plane (IP) magnetic field. Switching of the z-component of magnetization of the vortex is studied in computer simulations as a function of the magnetic field's amplitude and frequency. The effects of the size and the anisotropy of the system on the switching process are shown. An approximate dynamical equivalence of the system, in the bulk limit, to another system with both IP and OP static fields in the rotating reference frame is demonstrated, and qualitatively the same switching and critical behavior is obtained in computer simulations for both systems. We briefly discuss the interplay between finite size effects (image vortices) and the applied field in the dynamics of OP vortices. In the framework of a discrete reduced model of the vortex core we propose a mechanism for switching the vortex polarization, which can account qualitatively for all our results. A coupling between the IP movement (trajectories) of the vortex center and the OP core structure oscillations, due to the discreteness of the underlying lattice, is shown. A connection between this coupling and our reduced model is made clear, through an analogy with a generalized Thiele equation. Received 6 June 2002 / Received in final form 4 November 2002 Published online 6 March 2003 RID="a" ID="a"e-mail: juan.zagorodny@uni-bayreuth.de  相似文献   

18.
孙璐  火炎  周超  梁建辉  张祥志  许子健  王勇  吴义政 《物理学报》2015,64(19):197502-197502
利用上海光源软X射线谱学显微光束线站(STXM)并结合X射线的磁圆二色效应, 我们对方形、圆形和三角形的Ni80Fe20薄膜微结构中的磁涡旋结构进行了定量实验观测, 并利用同步辐射光源的元素分辨特性, 分别在Fe和Ni的L3吸收边对涡旋磁结构进行了观测. 我们还对磁涡旋中磁矩的分布进行了定量分析, 发现实验结果与微磁学模拟结果完全符合.  相似文献   

19.
In a circular dot of permalloy with an appropriate size, a vortex structure with perpendicular (turned-up) magnetization at the core is realized. The existence of the perpendicular magnetization spot has been confirmed and the direction of the magnetization, up or down, has been determined by magnetic force microscopy (MFM) for permalloy dots with the diameter of 0.1–1 μm. The switching field of turned-up magnetization is determined by applying external fields perpendicularly and in tilted directions to the plane. By comparing the MFM results and the magnetization curves measured by a SQUID magnetometer, the switching process of turned-up magnetization is argued.  相似文献   

20.
The interaction of a magnetic vortex in a circular ferromagnetic nanoparticle with the probe field of a magnetic force microscope (MFM) is theoretically investigated. In the calculations, the probe field is approximated by the point dipole field. The rigid magnetic vortex model is used to describe the vortex state of magnetization. It is found that the effect of the probe field on the rigid magnetic vortex shell is similar to the effect of a uniform magnetic field parallel to the particle plane. The effect of the Z component of the probe field on the core of the vortex results in mutual probe-vortex attraction or repulsion. It is shown that the magnetization direction of the core of the vortex in the MFM probe field can be changed without a change in the shell vorticity direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号