首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved (~3 ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal-vapor), as the average distance between atoms increases.  相似文献   

2.
PdTe_2,a member of layered transition metal dichalcogenides(TMDs),has aroused significant research interest due to the coexistence of superconductivity and type-II Dirac fermions.It provides a promising platform to explore the interplay between superconducting quasiparticles and Dirac fermions.Moreover,PdTe_2 has also been used as a substrate for monolayer antimonene growth.Here in this paper,we report the epitaxial growth of high quality PdTe_2 films on bilayer graphene/SiC(0001)by molecular beam epitaxy(MBE).Atomically thin films are characterized by scanning tunneling microscopy(STM),X-ray photoemission spectroscopy(XPS),low-energy electron diffraction(LEED),and Raman spectroscopy.The band structure of 6-layer PdTe_2 film is measured by angle-resolved photoemission spectroscopy(ARPES).Moreover,our air exposure experiments show excellent chemical stability of epitaxial PdTe_2 film.High-quality PdTe_2 films provide opportunities to build antimonene/PdTe_2 heterostructure in ultrahigh vacuum for future applications in electronic and optoelectronic nanodevices.  相似文献   

3.
We present a dynamical model that reproduces the observed time evolution of the magnetization in diluted magnetic semiconductor films after weak laser excitation. Based on a many-particle expansion of the exact p–d exchange interaction, our approach goes beyond the usual mean-field approximation. Numerical results demonstrate that the hole spin relaxation plays a crucial role for explaining the ultrafast demagnetization processes observed experimentally. The influence of the laser power on the magnetization dynamics is also investigated.  相似文献   

4.
本文结合可见-近红外-中红外瞬态吸收光谱技术对离子交换法制备的少层MoS2中缺陷介导的载流子动力学进行了详细的解析. 在近红外瞬态吸收光谱中观察到的宽带漂白信号表明少层MoS2纳米片带隙中分布着大量的缺陷态. 实验结果明确揭示了载流子被缺陷态的快速捕获以及进一步的复合过程,证明带隙中的缺陷态对MoS2光生载流子动力学过程起着至关重要的作用. 在中红外瞬态吸收光谱中观察到的正信号到负信号的转变进一步证实了在导带下小于0.24 eV处存在被载流子占据的缺陷态. 这些在少层MoS2纳米片中存在的缺陷态可以作为有效的载流子捕获中心来辅助光生载流子在皮秒时间尺度内完成非辐射复合过程.  相似文献   

5.
Rhenium disulfide (ReS2) is regarded as a promising candidate for optoelectronic applications (e.g., infrared photodetector), as it maintains a direct bandgap regardless of the number of layers unlike other typical transition metal dichalcogenides. Therefore, it is very important to understand and control the defects of ReS2 for enhancing the performance of photodevices. In this work, we studied the electronic structures of ReS2 affected by sulfur vacancies of different atomic registries at the atomic scale. The atomic and electronic structures of the mechanically exfoliated ReS2 flakes were investigated using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), and were confirmed using density functional theory (DFT) calculations. The atomic structural models indicate four distinguishable atomic registries of sulfur vacancies on one face of ReS2. Energetically, these atomic vacancies prefer to locate on the bottom side of the top monolayer of ReS2 flakes. Only two among four possible kinds of vacancies could be observed using STM and STS, and they were identified using additional DFT calculations. We believe that our results regarding the identification of the defects and understanding the corresponding effects for electronic structures will provide important insights to enhance the performances of ReS2-based optoelectronic devices in the future.  相似文献   

6.
王艳梅  唐颖  张嵩  龙金友  张冰 《物理学报》2018,67(22):227802-227802
分子量子态的研究,特别是分子激发态演化过程的研究不仅可以了解分子量子态的基本特性和量子态之间的相互作用,而且可以了解化学反应过程和反应通道间的相互作用.飞秒时间分辨质谱和光电子影像是将飞秒抽运-探测分别与飞行时间质谱和光电子影像相结合的超快谱学方法,为实现分子内部量子态探测,研究分子量子态相互作用及超快动力学过程提供了强有力的工具,可以在飞秒时间尺度下研究单分子反应过程中的光物理或光化学机理.本文详细介绍了飞秒时间分辨质谱和光电子影像的技术原理,并结合本课题组的工作,展示了这两种方法在量子态探测及相互作用研究领域,特别是激发态电子退相、波包演化、能量转移、分子光解动力学以及分子激发态结构动力学研究中的广泛应用.最后,对该技术的发展前景以及进一步的研究工作和方向进行了展望.  相似文献   

7.
A quantum-dynamical analysis of exciton dissociation at polymer heterojunctions is presented, using a hierarchical electron-phonon model parametrized for three electronic states and 28 vibrational modes. Two representative interfacial configurations are considered, both of which exhibit an ultrafast exciton decay. The efficiency of the process depends critically on the presence of intermediate bridge states, and on the dynamical interplay of high- vs low-frequency phonon modes. The ultrafast, highly nonequilibrium dynamics is consistent with time-resolved spectroscopic observations.  相似文献   

8.
《Physics Reports》2002,368(1):1-117
Electronically excited cations, generated by inner-valence ionization of small molecules, relax in general by dissociation and photon emission. Autoionization is forbidden for energetic reasons. The situation changes fundamentally in an inner-valence ionized cluster, which releases its excess energy by emitting an electron. This novel process, referred to as Intermolecular Coulombic Decay, is characterized by an efficient energy transfer between monomers in the cluster. The decay is ultrafast, taking place on a femtosecond time scale. Theoretical tools are developed to predict the properties, in particular lifetimes, of molecular systems undergoing electronic decay. These methods are applied to study the relaxation of inner-valence holes in clusters. In order to enable a treatment of the scattering and the many-particle problem with standard electronic correlation methods for bound states, a complex absorbing potential is added to the Hamiltonian. Conceptual as well as practical aspects of this procedure are discussed in detail.  相似文献   

9.
Monolayer transition metal dichalcogenides have emerged as promising mat erials for opt oelectTonic and nanophotonic devices.However,the low photoluminescence(PL)quantum yield(QY)hinders their various potential applications.Here we engineer and enhance the PL intensity of monolayer WS2by femtosecond laser irradiation.More than two orders of magnitude enhancement of PL intensity as compared to the as-prepared sample is determined.Furthermore,the engineering time is shortened by three orders of magnitude as compared to the improvement of PL intensity by continuous-wave laser irradiation.Based on the evolution of PL spectra,we attribute the giant PL enhancement to the conversion from trion emission to exciton,as well as the improvement of the QY when exciton and trion are localized to the new-formed defects.We have created microstructures on the monolayer WS2based on the enhancement of PL intensity,where the engineered structures can be stably stored for more than three years.This flexible approach with the feature of excellent long-term storage stability is promising for applications in information storage,display technology,and opto electronic devices.  相似文献   

10.
Using three-pulse four-wave-mixing optical spectroscopy, we study the ultrafast dynamics of the quantum Hall system. We observe striking differences as compared to an undoped system, where the 2D electron gas is absent. In particular, we observe a large off-resonant signal with strong oscillations. Using a microscopic theory, we show that these are due to many-particle coherences created by interactions between photoexcited carriers and collective excitations of the 2D electron gas. We extract quantitative information about the dephasing and interference of these coherences.  相似文献   

11.
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.  相似文献   

12.
Zhi-Li Zhu 《中国物理 B》2022,31(7):77101-077101
Charge density wave (CDW) strongly affects the electronic properties of two-dimensional (2D) materials and can be tuned by phase engineering. Among 2D transitional metal dichalcogenides (TMDs), VTe$_{2}$ was predicted to require small energy for its phase transition and shows unexpected CDW states in its T-phase. However, the CDW state of H-VTe$_{2}$ has been barely reported. Here, we investigate the CDW states in monolayer (ML) H-VTe$_{2}$, induced by phase-engineering from T-phase VTe$_{2}$. The phase transition between T- and H-VTe$_{2}$ is revealed with x-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) measurements. For H-VTe$_{2}$, scanning tunneling microscope (STM) and low-energy electron diffraction (LEED) results show a robust $2\sqrt 3 \times 2\sqrt 3 $ CDW superlattice with a transition temperature above 450 K. Our findings provide a promising way for manipulating the CDWs in 2D materials and show great potential in its application of nanoelectronics.  相似文献   

13.
We study light absorption mechanisms in semiconducting carbon nanotubes using low-temperature, single-nanotube photoluminescence excitation spectroscopy. In addition to purely electronic transitions, we observe several strong phonon-assisted bands due to excitation of one or more phonon modes together with the first electronic state. In contrast with a small width of emission lines (sub-meV to a few meV), most of the photoluminescence excitation features have significant linewidths of tens of meV. All of these observations indicate very strong electron-phonon coupling that allows efficient excitation of electronic states via phonon-assisted processes and leads to ultrafast intraband relaxation due to inelastic electron-phonon scattering.  相似文献   

14.
Surface localized electronic states constitute electronic environment for a variety of physical and chemical phenomena taking place on surfaces. Various processes of model catalytic reactions may be influenced or mediated by hot electrons and holes excited in quasi-two-dimensional bands occurring on a large number of metal surfaces. Here we discuss several important aspects of nonadiabatic dynamics of these excitations which may affect the measurements of surface electronic properties by ultrafast electron spectroscopies.  相似文献   

15.
Yi-Di Pang 《中国物理 B》2021,30(6):68501-068501
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as tungsten diselenide (WSe2) have spead many interesting physical properties, which may become ideal candidates to develop new generation electronic and optoelectronic devices. In order to reveal essential features of 2D TMDCs, it is necessary to fabricate high-quality devices with reliable electrical contact. We systematically analyze the effect of graphene and metal contacts on performance of multi-layered WSe2 field effect transistors (FETs). The temperature-dependent transport characteristics of both devices are tested. Only graphene-contacted WSe2 FETs are observed with the metal-insulator transition phenomenon which mainly attributes to the ultra-clean contact interface and lowered contact barrier. Further characterization on contact barrier demonstrates that graphene contact enables lower contact barrier with WSe2 than metal contact, since the Fermi level of graphene can be modulated by the gate bias to match the Fermi level of the channel material. We also analyze the carrier mobility of both devices under different temperatures, revealing that graphene contact can reduce the charge scattering of the device caused by ionized impurities and phonon vibrations in low and room temperature regions, respectively. This work is expected to provide reference for fabricating 2D material devices with decent performances.  相似文献   

16.
By integrating pump-probe ultrafast spectroscopy with diamond anvil cell(DAC) technique, we demonstrate a time-resolved ultrafast dynamics study on non-equilibrium quasiparticle(QP) states in Sr_2IrO_4 under high pressure. On-site in situ condition is realized, where both the sample and DAC have fixed position during the experiment. The QP dynamics exhibits a salient pressure-induced phonon bottleneck feature at 20 GPa, which corresponds to a gap shrinkage in the electronic structure. A structural transition is also observed at 32 GPa.In addition, the slowest relaxation component reveals possible heat diffusion or pressure-controlled local spin fluctuation associated with the gap shrinkage. Our work enables precise pressure dependence investigations of ultrafast dynamics, paving the way for reliable studies of high-pressure excited state physics.  相似文献   

17.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with fascinating electronic energy band structures, rich valley physical properties and strong spin–orbit coupling have attracted tremendous interest, and show great potential in electronic, optoelectronic, spintronic and valleytronic fields. Stacking 2D TMDs have provided unprecedented opportunities for constructing artificial functional structures. Due to the low cost, high yield and industrial compatibility, chemical vapor deposition (CVD) is regarded as one of the most promising growth strategies to obtain high-quality and large-area 2D TMDs and heterostructures. Here, state-of-the-art strategies for preparing TMDs details of growth control and related heterostructures construction via CVD method are reviewed and discussed, including wafer-scale synthesis, phase transition, doping, alloy and stacking engineering. Meanwhile, recent progress on the application of multi-functional devices is highlighted based on 2D TMDs. Finally, challenges and prospects are proposed for the practical device applications of 2D TMDs.  相似文献   

18.
Starting from a previously derived many-particle equation describing biexciton states, the influence of dynamical exciton-exciton scattering effects on the biexciton binding energy has been calculated. As a result, we obtain density effects in bound states. In qualitative agreement with experimental data only a small density-induced shift of the biexcitonic luminescence should be observed.  相似文献   

19.
Employing the momentum sensitivity of time- and angle-resolved photoemission spectroscopy we demonstrate the analysis of ultrafast single- and many-particle dynamics in antiferromagnetic EuFe(2)As(2). Their separation is based on a temperature-dependent difference of photoexcited hole and electron relaxation times probing the single-particle band and the spin density wave gap, respectively. Reformation of the magnetic order occurs at 800 fs, which is 4 times slower compared to electron-phonon equilibration due to a smaller spin-dependent relaxation phase space.  相似文献   

20.
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide interest not only for the fundamental research,but also for the application of next generation electronic and optoelectronic devices.Herein,we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures.Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2.Due to the interaction between the In2Se3 and MoSe2 layers,the heterostructure shows the quenching and red-shift of photoluminescence.Moreover,the current rectification behavior and photovoltaic effect can be observed from the heterostructure,which is attributed to the unique band structure alignment of the heterostructure,and is further confirmed by Kevin probe force microscopy measurement.The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号