首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石磊  冯士维  石帮兵  闫鑫  张亚民 《物理学报》2015,64(12):127303-127303
通过采集等功率的两种不同开态直流应力作用下AlGaN/GaN高电子迁移率晶体管(HEMTs)漏源电流输出特性、源区和漏区大信号寄生电阻、转移特性、阈值电压随应力时间的变化, 并使用光发射显微镜观察器件漏电流情况, 研究了开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用. 结果表明, 低电压大电流应力下器件退化很少, 高电压大电流下器件退化较明显. 高电压是HEMTs退化的主要因素, 栅漏之间高电场引起的逆压电效应对参数的永久性退化起决定性作用. 除此之外, 器件表面损坏部位的显微图像表明低电压大电流下器件失效是由于局部电流密度过高, 出现热斑导致器件损伤引起的.  相似文献   

2.
陈海峰 《物理学报》2013,62(18):188503-188503
研究了反向衬底偏压VB下纳米N沟道金属氧化物半导体场效应晶体管中栅调制界面产生(GMG)电流IGMG特性, 发现IGMG曲线的上升沿与下降沿随着|VB|的增大向右漂移. 基于实验和理论模型分析, 得出了VB与这种漂移之间的物理作用机制, 漂移现象的产生归因于衬底偏压VB 调节了表面电势φs在栅电压VG 中的占有比重: |VB|增大时相同VGφs会变小, φs 的变化继而引发上升沿产生率因子gr减小以及下降沿产生率因子gf增大. 进一步发现IGMG 上升沿与下降沿的最大跨导GMR, GMF 在对数坐标系下与VB成线性关系, 并且随着|VB|增加而增大. 由于漏电压VDIGMG 上升沿与下降沿中的作用不同, 三种VDGMR-VB曲线重合而GMF-VB曲线则产生差异. 增大VD 会增强gfVG的变化, 因此使得给定VB 下的GMF变大. 同时这却导致了更大VDGMF-VB 曲线变化的趋势减缓, 随着VD从0.2 V变为0.6 V, 曲线的斜率s从0.09减小到0.03. 关键词: 产生电流 表面势 衬底偏压 N沟道金属氧化物半导体场效应晶体管  相似文献   

3.
雷勇  苏静  吴红艳  杨翠红  饶伟锋 《中国物理 B》2017,26(2):27105-027105
In this work, a dislocation-related tunneling leakage current model is developed to explain the temperature-dependent reverse current–voltage(I–V –T) characteristics of a Schottky barrier diode fabricated on free-standing GaN substrate for reverse-bias voltages up to-150 V. The model suggests that the reverse leakage current is dominated by the direct tunneling of electrons from Schottky contact metal into a continuum of states associated with conductive dislocations in GaN epilayer.A reverse leakage current ideality factor, which originates from the scattering effect at metal/GaN interface, is introduced into the model. Good agreement between the experimental data and the simulated I–V curves is obtained.  相似文献   

4.
Step-stress experiments are performed in this paper to investigate the degradation mechanism of an AIGaN/GaN high electron mobility transistor (HEMT). It is found that the stress current shows a recoverable decrease during each voltage step and there is a critical voltage beyond which the stress current starts to increase sharply in our experiments. We postulate that defects may be randomly induced within the A1GaN barrier by the high electric field during each voltage step. But once the critical voltage is reached, the trap concentration will increase sharply due to the inverse piezoelectric effect. A leakage path may be introduced by excessive defect, and this may result in the permanent degradation of the A1GaN/GaN HEMT.  相似文献   

5.
任舰  闫大为  顾晓峰 《物理学报》2013,62(15):157202-157202
本文首先制备了与AlGaN/GaN高电子迁移率晶体管 (HEMT) 结构与特性等效的AlGaN/GaN异质结肖特基二极管, 采用步进应力测试比较了不同栅压下器件漏电流的变化情况, 然后基于电流-电压和电容-电压测试验证了退化前后漏电流的传输机理, 并使用失效分析技术光发射显微镜 (EMMI) 观测器件表面的光发射, 研究了漏电流的时间依赖退化机理. 实验结果表明: 在栅压高于某临界值后, 器件漏电流随时间开始增加, 同时伴有较大的噪声. 将极化电场引入电流与电场的依赖关系后, 器件退化前后的 log(IFT/E)与√E 都遵循良好的线性关系, 表明漏电流均由电子Frenkel-Poole (FP) 发射主导. 退化后 log(IFT/E)与√E 曲线斜率的减小, 以及利用EMMI在栅边缘直接观察到了与缺陷存在对应关系的“热点”, 证明了漏电流退化的机理是: 高电场在AlGaN层中诱发了新的缺陷, 而缺陷密度的增加导致了FP发射电流IFT的增加. 关键词: AlGaN/GaN 高电子迁移率晶体管 漏电流 退化机理  相似文献   

6.
The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor(HEMT) becomes one of the most important reliability issues with the downscaling of feature size.In this paper,the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K.Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current.By comparing the experimental data with the numerical transport models,it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current.However,good agreement is found between the experimental data and the two-dimensional variable range hopping(2D-VRH) model.Therefore,it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer.Moreover,the activation energy of surface leakage current is extracted,which is around 0.083 eV.Finally,the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied.It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV,which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper.  相似文献   

7.
测量了晶格匹配InAlN/GaN异质结肖特基接触的反向变温电流-电压特性曲线,研究了反向漏电流的偏压与温度依赖关系.结果表明:1)电流是电压和温度的强函数,饱和电流远大于理论值,无法采用经典热发射模型解释;2)在低偏压区,数据满足ln(I/E)-E1/2线性依赖关系,电流斜率和激活能与Frenkel-Poole模型的理论值接近,表明电流应该为FP机制占主导;3)在高偏压区,数据满足ln(I/E)-E1/2线性依赖关系,电流斜率不随温度改变,表明Fowler-Nordheim隧穿机制占主导;4)反向电流势垒高度约为0.60 eV,远低于热发射势垒高度2.91 eV,表明可导位错应是反向漏电流的主要输运通道,局域势垒由于潜能级施主态电离而被极大降低.  相似文献   

8.
This paper gives a detailed analysis of the time-dependent degradation of the threshold voltage in AlGaN/GaN high electron mobility transistors(HEMTs) submitted to off-state stress. The threshold voltage shows a positive shift in the early stress, then turns to a negative shift. The negative shift of the threshold voltage seems to have a long recovery time. A model related with the balance of electron trapping and detrapping induced by shallow donors and deep acceptors is proposed to explain this degradation mode.  相似文献   

9.
陈伟伟  马晓华  侯斌  祝杰杰  张进成  郝跃 《中国物理 B》2013,22(10):107303-107303
Step-stress experiments are performed in this paper to investigate the degradation mechanism of an AlGaN/GaN high electron mobility transistor(HEMT).It is found that the stress current shows a recoverable decrease during each voltage step and there is a critical voltage beyond which the stress current starts to increase sharply in our experiments.We postulate that defects may be randomly induced within the AlGaN barrier by the high electric field during each voltage step.But once the critical voltage is reached,the trap concentration will increase sharply due to the inverse piezoelectric effect.A leakage path may be introduced by excessive defect,and this may result in the permanent degradation of the AlGaN/GaN HEMT.  相似文献   

10.
Dongyan Zhao 《中国物理 B》2022,31(11):117301-117301
Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors (HEMTs) are experimentally investigated. It is observed that the reverse leakage current between the gate and source decreases after the off-state stress, whereas the current between the gate and drain increases. By analyzing those changes of the reverse currents based on the Frenkel-Poole model, we realize that the ionization of fluorine ions occurs during the off-state stress. Furthermore, threshold voltage degradation is also observed after the off-state stress, but the degradations of AlGaN/GaN HEMTs treated with different F-plasma RF powers are different. By comparing the differences between those devices, we find that the F-ions incorporated in the GaN buffer layer play an important role in averting degradation. Lastly, suggestions to obtain a more stable fluorine-plasma treated AlGaN/GaN HEMT are put forwarded.  相似文献   

11.
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

12.
郝跃  韩新伟  张进城  张金凤 《物理学报》2006,55(7):3622-3628
通过对AlGaN/GaN HEMT器件直流扫描情况下电流崩塌现象和机理的分析,建立了一个AlGaN/GaN HEMT器件的直流扫描电流崩塌模型.该模型从AlGaN/GaN器件工作机理出发,综合考虑了器件结构、半导体表面与界面,以及量子阱特殊结构对电流崩塌的影响.实验反复证明了该模型与实验结果有良好的一致性. 关键词: AlGaN/GaN HEMT 直流扫描 电流崩塌 模型  相似文献   

13.
迟锋  刘黎明  孙连亮 《中国物理 B》2017,26(3):37304-037304
Spin-polarized current generated by thermal bias across a system composed of a quantum dot(QD) connected to metallic leads is studied in the presence of magnetic and photon fields. The current of a certain spin orientation vanishes when the dot level is aligned to the lead's chemical potential, resulting in a 100% spin-polarized current. The spin-resolved current also changes its sign at the two sides of the zero points. By tuning the system's parameters, spin-up and spin-down currents with equal strength may flow in opposite directions, which induces a pure spin current without the accompany of charge current. With the help of the thermal bias, both the strength and the direction of the spin-polarized current can be manipulated by tuning either the frequency or the intensity of the photon field, which is beyond the reach of the usual electric bias voltage.  相似文献   

14.
李蕾蕾  刘红侠  于宗光  郝跃 《物理学报》2006,55(5):2459-2463
在电容测量的基础上研究了薄隧道氧化层在恒定Fowler-Nordheim(F-N)隧穿电流下的退化情况. 这种退化是恒流应力和时间的函数,对恒流应力大小的依赖性更加强烈,隧道氧化层在F-N电流下的退化是注入电荷密度(Qinj)的函数. 在较低Qinj下氧化层中发生正电荷俘获,在较高Qinj下发生负电荷俘获,导致栅压变化的反复. 关键词: 2PROM')" href="#">E2PROM 隧道氧化层 退化 恒流应力  相似文献   

15.
Lixiang Chen 《中国物理 B》2021,30(10):108502-108502
The role of the oxygen in AlGaN/GaN high electron mobility transistors (HEMTs) before and after semi-on state stress was discussed. Comparing with the electrical characteristics of the devices in vacuum, air, and oxygen atmosphere, it is revealed that the oxygen has significant influence on the electric characteristics and the hot-carrier-stress-induced degradation of the device. Comparing with the situation in vacuum, the gate leakage increased an order of magnitude in oxygen and air atmosphere. Double gate structure was used to separate the barrier leakage and surface leakage of AlGaN/GaN HEMT it is found that surface leakage is the major influencing factor in gate leakage of SiN-passivated devices before and after semi-on state stress. During semi-on state stress in the oxygen atmosphere, the electric-field-driven oxidation process promoted the oxidation of the nitride layer, and the oxidation layer in the SiN/AlGaN interface leads to the decreasing of the surface leakage.  相似文献   

16.
郑直  李威  李平 《中国物理 B》2013,(4):471-475
A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.  相似文献   

17.
Direct current(DC) reverse step voltage stress is applied on the gate of an AlGaN/GaN high-electron mobility transistor(HEMT).Experiments show that parameters degenerate under stress.Large-signal parasitic source/drain resistance(RS/RD) and gate-source forward I-V characteristics are recoverable after breakdown of the device under test(DUT).Electrons trapped by both the AlGaN barrier trap and the surface state under stress lead to this phenomenon,and surface state recovery is the major reason for the recovery of device parameters.  相似文献   

18.
In this paper, we have applied our bipolar transport model for studying the charge dynamics in the insulating polyethylene materials, from nano to micro -scales and under dc high applied field. We have also applied the model for studying the electrical breakdown phenomenon for these mentioned scales. The principal results are dedicated to the evolution of the external current in low density polyethylene samples. Under notable dc high applied field, the electrical pre-breakdown phenomenon is indicated by an abrupt increase that occurs during the steady state of the external current.  相似文献   

19.
马晓华  马骥刚  杨丽媛  贺强  焦颖  马平  郝跃 《中国物理 B》2011,20(6):67304-067304
The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps. A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Vds = 0-state, off-state, on-state (on-state with low voltage, high-power state, high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons. With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.  相似文献   

20.
杨凌  胡贵州  郝跃  马晓华  全思  杨丽媛  姜守高 《中国物理 B》2010,19(4):47301-047301
This paper investigates the impact of electrical degradation and current collapse on different thickness SiNx passivated AlGaN/GaN high electron mobility transistors.It finds that higher thickness SiNx passivation can significantly improve the high-electric-field reliability of a device.The degradation mechanism of the SiNx passivation layer under ON-state stress has also been discussed in detail.Under the ON-state stress,the strong electric-field led to degradation of SiNx passivation located in the gate-drain region.As the thickness of SiNx passivation increases,the density of the surface state will be increased to some extent.Meanwhile,it is found that the high NH 3 flow in the plasma enhanced chemical vapour deposition process could reduce the surface state and suppress the current collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号