首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Undoped GaSb is p-type with the residual acceptor concentration of about 1e17 cm−3 due to the gallium vacancies and gallium in antimony site. Counter-doping of GaSb with low level of Te can reduce the net carrier concentration resulting in higher optical transparency in a broad IR spectral range. In this work, the carrier concentration, mobility and sheet resistance of n-type and p-type Te-doped GaSb substrates were measured using Hall method at 300 K and 77 K. The Hall carrier concentration data at 300 K were correlated with the absorption coefficients of GaSb in the IR spectral range. An empirical relationship between these values was established. Based on this correlation, we discuss application of FTIR spectroscopy for non-destructive optical screening of the substrates that allows construction of the carrier concentration distribution map across GaSb wafers. Investigations of the electronic properties of the low-doped p-type and n-type GaSb substrates upon cooling down to 77 K indicate the reduction of the hole carrier concentration background for both GaSb types. This is evident from the decrease in the Hall-measured carrier concentration for p-type GaSb. For n-type GaSb, an increase in the carrier concentration is observed due to the reduction of the hole carrier concentration background.  相似文献   

2.
We have investigated on the molecular beam epitaxy (MBE) of Te-doped GaSb films on ZnTe buffer. Te-doped GaSb (GaSb:Te) films with and without ZnTe buffer were grown on (0 0 1) GaAs substrates. GaSb:Te/ZnTe/GaAs film revealed higher mobility (=631 cm2/V s) in comparison to GaSb:Te/GaAs film (=249 cm2/V s). To explain the higher mobility of GaSb:Te on ZnTe buffer, dislocation density and temperature dependence of Hall measurement results were analyzed. Temperature dependence of Hall measurement shows strong influence of the dislocation scattering, which indicates that dislocation reduction by the ZnTe buffer enhances the carrier mobility of GaSb films.  相似文献   

3.
A type-II InAs/GaSb superlattice (SL) was grown on Te-doped (1 0 0) GaSb substrate by low pressure metal organic chemical vapor deposition (LP-MOCVD). The samples were obtained at different growth temperatures and with different interface layers. By introducing an InAsSb interface layer between InAs and GaSb, a good surface morphology of the superlattice was achieved when the sample growth temperature was around 500–520 °C. The photoluminescence (PL) peak wavelength of the sample was 10.7 μm at 77 K, with FWHM of ∼30 meV.  相似文献   

4.
设计和制造了一套垂直渐冷设备以研究强磁场中的晶体生长,在强磁场和无磁场下,测量了掺碲InSb熔体及其上方的温度分布;生长了低GaSh组分的InGaSb和掺碲InSb晶体.实验表明,8.00T的强磁场能改善InGaSb混晶的质最和提高InSb晶体中Te杂质轴向分布的均匀性.分析认为,这些结果是强磁场提高流体的稳定性和降低对流的速度所致. 关键词:  相似文献   

5.
Improvement of the optical and electrical characteristics is essential to get advanced performance from one dimensional (1D) material. Here, we report the first synthesis of a single crystalline Te-doped CdS nanowires (NWs) by a chemical-vapor-deposition (CVD) method. Room temperature photoluminescence (PL) spectra showed that Te concentration plays an important role in tuning emission color from orange to infrared (IR). Decrease in bandgap and PL intensity with increase in Te concentration was observed as compared to undoped CdS NWs. Red and IR emissions were found at 736.5 and 881 nm for doping concentration >6.06%. To our best knowledge, IR emission band has been observed for the first time in CdS NWs. Red-shift of LO phonon mode and its overtone in Raman spectra, and lifetime of red and IR emissions are longer than bandgap of host indicating the doping effect of CdS NWs. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) of the Te-doped CdS NWs further confirms the presence of Te in the CdS NWs. Output characteristics confirm enhanced output current Ids with the increase in doping concentration. A possible growth mechanism was proposed. Doping technique offers to develop high-quality, a very stable, effective, and easily-applicable way to enhance the performance of one dimensional optoelectronic devices and solar cell applications.  相似文献   

6.
Undoped p-type Ga Sb single crystals were annealed at 550–600?C for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infrared(IR)optical transmission and photoluminescence(PL) spectroscopy. Compared with the as-grown Ga Sb single crystal, the annealed Ga Sb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the Ga Sb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.  相似文献   

7.
The relationship of the Te precipitated phase concentration in the matrix to IR transmittance and crystalline quality of as-grown CdZnTe wafers was investigated by means of various optical and structural techniques including infrared (IR) transmission, differential scanning calorimetry (DSC) and Rutherford backscattering spectroscopy (RBS). Results indicate that Te precipitates/inclusions in CdZnTe matrix reduce IR transmittance, especially at concentration ≥0.6 wt.%. Additionally, the crystalline perfection of near-stoichiometric as-grown CdZnTe is better than that of non-stoichiometric samples, and decreases with increasing second-phase concentration.  相似文献   

8.
The vibrational spectrum of ultra-thin layer GaSb/AlSb superlattices was investigated in detail by infrared (IR) and Raman spectroscopies. The effect of confinement of the transverse and longitudinal optical phonons in both types of the layers was studied. The dispersions of optical phonons of the GaSb and the AlSb obtained from the analysis of the Raman and IR spectra are in a good accordance with the theoretical data and results of neutron scattering experiments. First- and second-order Raman spectroscopy indicates the presence of intermixture of atoms at the interfaces in the GaSb/AlSb superlattices. Received: 11 May 1998 / Accepted: 21 July 1998  相似文献   

9.
In this paper we present results on the characterization of Zn-doped InGaAsSb epitaxial layers to be used in the development of stacked solar cells. Using the liquid phase epitaxy technique we have grown p-type InGaAsSb layers, using Zn as the dopant, and n-type Te-doped GaSb wafers as substrates. A series of Zn-doped InGaAsSb samples were prepared by changing the amount of Zn in the melt in the range: 0.1-0.9 mg to obtain different p-type doping levels, and consequently, different p-n region characteristics. Low temperature photoluminescence spectra (PL) were measured at 15 K using at various excitation powers in the range 80-160 mW. PL spectra show the presence of an exciton-related band emission around 0.642 eV and a band at 0.633 eV which we have related to radiative emission involving Zn-acceptors. Using the photoacoustic technique we measured the interface recombination velocities related to the interface crystalline quality, showing that the layer-substrate interface quality degrades as the Zn concentration in the layers increases.  相似文献   

10.
The structural properties of InAs/(GaIn)Sb and (InGa)As/GaSb superlattices (SLs), grown by solid-source molecular-beam epitaxy on GaAs substrates using a strain relaxed GaSb or InAs buffer layer or directly on InAs substrates, were analyzed by high-resolution X-ray diffraction and Raman spectroscopy. The residual strain within the SL was found to depend critically on the type of interface bonds, which can be either InSb- or GaAs-like. Thus, to achieve lattice matching to the buffer layer or substrate by strain compensation within the SL stack, the controlled formation of the interface bonds is vital. On the other hand, minimization of the residual strain is shown to be a prerequisite for achieving a high photoluminescence yield and high responsivities for InAs/(GaIn)Sb SL based IR detectors.  相似文献   

11.
本文以反射式高能电子衍射(RHEED)和其强度振荡为监测手段,在半绝缘GaAs衬底上成功地生长GaSb/AlSb/GaAs应变层结构,RHEED图样表明,GaSb正常生长时为Sb稳定的C(2×6)结构,AlSb为稳定的(1×3)结构,作者观察并记录GaSb,AlSb生长时的RHEED强度振荡,并利用它成功地生长10个周期的GaSb/AlSb超晶格,透射电子显微镜照片显示界面平整、清晰,采用较厚的AlSb过渡层及适当的生长条件,可在半绝缘GaAs衬底上生长出质量好的GaSb外延层,其X射线双晶衍射半峰宽小于 关键词:  相似文献   

12.
Magnetoquantum oscillations of the Hall coefficient RH were observed in Te-doped GaSb layers grown by molecular beam epitaxy. The free electron densities were in the low 1016 cm−3 range or even slightly lower, thus achieving, for the first time in GaSb, the extreme quantum limit, where all the electrons occupy the spin-split 0(+) Landau level (LL). Similarly to other known cases, the amplitude of the last maximum of RH could be explained as enhanced by the metal-to-insulator transition of the spin-down electron system in the n=0 LL. The occurrence of the last negative oscillation of RH below its classical value, called Hall dip, could be frustrated, in samples with sufficiently low carrier densities, by an incipient carrier freeze-out at donor impurities induced by the magnetic field.  相似文献   

13.
GaInSb/GaSb量子阱结构的低温光致发光谱   总被引:1,自引:0,他引:1  
GaInSb三元合金半导体可用于制作工作于1.55~5.5μm波段范围的光电子器件.在光通讯方面,需要2.55μm波长的激光器和接收器,GaInSb半导体合金无疑是一种可选的材料.此外,这种材料也可用于制作高速电子器件,与GaAs基异质结构相比,Ga...  相似文献   

14.
吴限量  张德贤  蔡宏琨  周严  倪牮  张建军 《物理学报》2015,64(9):96102-096102
基于GaSb薄膜热光伏器件是降低热光伏系统成本的有效途径之一, 本文主要针对GaSb/CdS薄膜热光伏器件结构进行理论分析. 采用AFORS-HET软件进行模拟仿真, 分析GaSb和CdS两种材料各自的缺陷态密度、界面态对电池性能的影响. 根据软件模拟可以得知, 吸收层GaSb的缺陷态密度以及GaSb与CdS之间的界面态密度是影响电池性能的重要因素. 当GaSb缺陷态增加时, 主要影响电池的填充因子, 电池效率明显下降. 而作为窗口层的CdS缺陷态密度对电池性能影响不明显, 当CdS缺陷态密度上升4个数量级时, 电池效率仅下降0.11%.  相似文献   

15.
We have studied the molecular beam epitaxy (MBE) of GaSb films on GaAs (0 0 1) substrates by using ZnTe as a new buffer layer. GaSb films were grown on two distinct ZnTe surfaces and the influence of surface chemical composition of ZnTe on the morphological and structural properties of GaSb films has been investigated. Initial 2-dimensional (2D) growth of GaSb films is obtained on Zn-terminated surface consequently smooth morphology and high crystal quality GaSb films are achieved. The thin GaSb film (0.4 μm) grown on Zn-terminated ZnTe surface reveals considerably narrow X-ray diffraction linewidth (113 arcsec) along with small residual strain, which strongly supports the availability of ZnTe buffer for the growth of high-quality GaSb film.  相似文献   

16.
刘会娟  陈宁  张清华  江波 《光学技术》2007,33(2):308-310,314
以正硅酸乙酯(TEOS)和硅油为前驱体,在碱性催化体系中制备出有机硅改性二氧化硅溶胶,采用提拉法获得了具备疏水性能的二氧化硅减反膜。通过透射电镜、扫描探针显微镜、红外光谱、分光光度计、表面轮廓仪等多种方法研究了改性后的膜层性能。在高湿度环境中存放两周后,在波长确定的情况下,常规二氧化硅减反膜透过率由99.2%降到了96.5%,疏水改性膜层透过率仍然高于99%。与常规减反膜相比,疏水改性减反膜在高湿度条件下防止潮气侵蚀的性能得到了大幅度的提高。  相似文献   

17.
基于FTIR光谱辐射测量分析大气透过率   总被引:1,自引:0,他引:1  
提出了一种利用FTIR光谱仪进行大气透过率测量的方法。通过黑体对系统的光谱响应进行标定,由两点温度校准得到测量光谱的辐射亮度谱。在一定的距离内实测并分析计算出了CO2红外吸收波段的大气透过率谱。采用非线性最小二乘方法将测量的CO2透过率谱与HITRAN数据库中的光谱拟合得到了干洁大气中的CO2浓度值。实验结果表明,该方法是测量大气透过率和定量分析气体组分的可行性方法。  相似文献   

18.
硫化锌透镜中长波红外宽带增透膜的研制   总被引:4,自引:0,他引:4  
硫化锌(ZnS)透镜由于其透光区域较宽,便于光学系统的装校而被经常应用于红外光学系统中,但是其作为基底,镀制中长波红外增透膜却具有相当大的难度,尤其是牢固度的问题。根据任务要求研制的增透膜是在3.5~3.9μm的中波红外波段及9~12μm的长波红外波段,平均透射率大于90%。由于长波红外区可选用的宽透射区材料较少,所以兼顾材料的选用、光谱特性及可靠性满足使用要求等几方面考虑,最终采用氟化钇(YF3)作为低折射率材料,经过多次实验,采用混蒸、离子辅助等工艺方法以及选取合适的基底温度,通过对其他工艺环节的不断改进,解决了在ZnS透镜上镀制宽带增透膜,由YF3膜层严重的应力作用而导致膜层龟裂的问题,最终研制成功符合使用要求,并且可靠性和光谱特性皆优的中长波红外增透膜。  相似文献   

19.
Ren-Jie Liu 《中国物理 B》2022,31(7):76103-076103
Integration of the high-quality GaSb layer on an Si substrate is significant to improve the GaSb application in optoelectronic integration. In this work, a suitable ion implantation fluence of 5×1016-cm-2 H ions for GaSb layer transfer is confirmed. Combining the strain change and the defect evolution, the blistering and exfoliation processes of GaSb during annealing is revealed in detail. With the direct wafer bonding, the GaSb layer is successfully transferred onto a (100) Si substrate covered by 500-nm thickness thermal oxide SiO2 layer. After being annealed at 200 ℃, the GaSb layer shows high crystalline quality with only 77 arcsec for the full width at half maximum (FWHM) of the x-ray rocking curve (XRC).  相似文献   

20.
(Ga,In)(N,As) lattice matched to GaAs with a band gap of 1 eV is employed as active material in high-efficiency III–V solar cells. Te-doped Ga0.934In0.066N0.023As0.977 layers were grown by metal-organic vapor-phase epitaxy on (1 0 0) GaAs. The samples were highly doped n-type with carrier concentrations ranging from about 1017–1019 cm−3. Pieces of the samples were hydrogenated with H-doses of 1018 ion/cm2. The optical and electrical properties of the samples before and after hydrogenation were studied by low-temperature photoluminescence and magnetotransport. In undoped samples hydrogen is known to form N–H complexes which strongly reduce the local perturbation of the lattice due to nitrogen and thus reverse the N-induced global changes of the band structure. Combined analysis of photoluminescence and transport measurements on Te-doped samples, however, indicates a competition between N–H formation and passivation of the Te donor favoring the latter. Hardly any band structure changes due to hydrogenation are observed in these Te-doped samples, instead a strong reduction of the free-carrier concentration is observed after hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号