首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.  相似文献   

3.
In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation. Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof.  相似文献   

4.
In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation.Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof.  相似文献   

5.
We present the results of numerical study of the evolution of wave packets and envelope soliton interaction in terms of the third-order nonlinear Schrödinger equation. It is shown that an arbitrary initial pulse evolves to a few solitons and a linear quasiperiodic wave. The interaction of solitons is accompanied by the radiation of part of the wave field in the form of a linear quasiperiodic wave from the interaction region, amplification of the soliton with larger amplitude and attenuation of the soliton with smaller amplitude.  相似文献   

6.
Bo Ren 《理论物理通讯》2021,73(3):35003-27
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems.In this paper,we construct a(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli(eBLMP)equation which fails to pass the Painleve property.The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable.The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation.The dynamics of the three-soliton molecule,the three-kink soliton molecule,the soliton molecule bound by an asymmetry soliton and a one-soliton,and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.  相似文献   

7.
In the present letter, we get the appropriate bilinear forms of(2+1)-dimensional KdV equation, extended (2+1)-dimensional shallow water wave equation and (2+1)-dimensional Sawada-Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.  相似文献   

8.
By using a direct method, we construct the Hirota bilinear form for an extended (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation. Based on this bilinearization, the lump solitons and rogue wave solutions are investigated. Constraint conditions for the wave propagation and velocity for lump solitons are found and verified by figures. Also the lump-stripe interaction was investigated to show that the lump solitons will be swallowed by the stripe soliton. Finally, the dynamic behaviour for the obtained lump solution, rogue wave and lump-stripe soliton interaction by suitable special parameters is shown graphically.  相似文献   

9.
The D’Alembert solution is an important basic formula in linear partial differential theory due to that it can be considered as a general solution of the wave motion equation. However, the study of the D’Alembert wave is few works in nonlinear partial differential systems. In this paper, one construct the D’Alembert solution of a (2+1)-dimensional generalized breaking soliton equation which possesses the nonlinear terms. This D’Alembert wave has one arbitrary function in the traveling wave variable. We investigate the dynamics of the three soliton molecule, the soliton molecule by bound as an asymmetry soliton and one-soliton, the interaction between the half periodic wave and two-kink, and the interaction among the half periodic wave, one-kink and a kink soliton molecule of the (2+1)-dimensional generalized breaking soliton equation by selecting the appropriate parameters.  相似文献   

10.
A direct and unifying scheme for disclosure of periodic wave solutions of both nonlinear differential and difference equations is presented. The scheme is based on Hirota's bilinear form and certain Riemann theta function formulae. The relations between the periodic wave solutions and soliton solutions are rigorously established.  相似文献   

11.
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.  相似文献   

12.
We present a method by which one-dimensional nonlinear soliton and kink Schrödinger equations can be solved in closed form. The hermitean nonlinear soliton operator may contain up to second derivatives of the wave function and the vanishing condition must hold. The method is applied to solve known nonlinear Schrödinger equations for one-soliton and one-kink solutions and, by inverting the procedure, to derive new operators with wave packet solutions of algebraic and arbitrary shapes. One of them is equivalent to the Derivative Nonlinear Schrödinger equation.  相似文献   

13.
This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions. All the reported solutions are verified by inserting them into the original equation with the help of the Wolfram Mathematica package. The solution's visual characteristics are graphically represented in order to shed more light on the results obtained. The findings obtained are useful in understanding the basic nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and engineering sciences in the related nonlinear higher dimensional wave fields.  相似文献   

14.
An improved homogeneous balance principle and an F-expansion technique are used to construct analytical solutions to the generalized nonlinear Schrödinger equation with distributed coefficients and linear and nonlinear gain (or loss). For limiting parameters, these periodic wave solutions acquire the form of localized spatial solitons. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and gain (or loss). We present a few characteristic examples of periodic wave and soliton solutions with physical relevance.  相似文献   

15.
Starting from a general sixth-order nonlinear wave equation,we present its multiple kink solutions,which are related to the famous Hirota form.We also investigate the restrictions on the coefficients of this wave equation for possessing multiple kink structures.By introducing the velocity resonance mechanism to the multiple kink solutions,we obtain the soliton molecule solution and the breather-soliton molecule solution of the sixth-order nonlinear wave equation with particular coefficients.The three-dimensional image and the density map of these soliton molecule solutions with certain choices of the involved free parameters are well exhibited.After matching the parametric restrictions of the sixth-order nonlinear wave equation for having three-kink solution with the coefficients of the integrable bidirectional Sawada-Kotera-Caudrey-Dodd-Gibbons(SKCDG) equation,the breather-soliton molecule solution for the bidirectional SKCDG equation is also illustrated.  相似文献   

16.
In this research paper, the well-known simple Hirota’s method is employed to study the (2+1)-dimensional Sawad-Kotera equation. The logarithmic variable transformation is implemented on the proposed problem to construct the bilinear Hirota form. Based on its bilinear representation, the features of multi soliton solutions, M-lump waves, and the mixed 1-M-lump with one-soliton, and two-soliton solutions are explored. For one M-lump solution, the wave motion in the x and y directions are also studied. To better understand the physical phenomena of the gained solutions, three-dimensional graphics and their corresponding surfaces are also presented.  相似文献   

17.
Some simple special Bäcklund transformation theorems are proposed and utilized to obtain exact solutions for the (2+1)-dimensional Euler equation. It is found that the (2+1)-dimensional Euler equation possesses abundant soliton or solitary wave structures, conoid periodic wave structures and the quasi-periodic Bessel wave structures on account of the arbitrary functions in its solutions. Moreover, all solutions of the arbitrary two dimensional nonlinear Poisson equation can be used to construct exact solutions of the (2+1)-dimensional Euler equation.  相似文献   

18.
Under inquisition in this paper is a (2+1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.  相似文献   

19.
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schr ödinger equation. When the modulous m→1 or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.  相似文献   

20.
An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号