首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以存在热漏、摩擦等不可逆性,以双分子反应系统2SO3FS2O6F2为工质的光驱动发动机为研究对象,考虑工质与环境之间传热服从线性唯象传热定律[q∝Δ(T-1)],分别以输出功最大和熵产生最小为目标对整个循环活塞运动的最优路径进行研究.利用最优控制理论得出了活塞运动路径及工质温度的最优构型,给出了最优构型的数值算例,并与牛顿传热定律[q∝Δ(T)]下的最优构型进行了比较.  相似文献   

2.
The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 12. The optimal relationship between the dimensionless power output P* versus the efficiency eta for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.  相似文献   

3.

The present work emphasis on to estimate the theoretical findings of energy and exergy analysis of biodiesel fueled with diesel on variable compression ratio engine at various combinations of fuel blend at different compression ratios. This study aims to identify the optimum engine settings based on compression ratio and biodiesel blends. The engine is operated with methyl esters of rubber seed oil and its 20, 40, 60 and 80% blends with diesel on volume basis. The compression ratio is varied from 18:1 to 22:1 at five compression ratios at 80% load in 3.5 kW, 1500 rpm, single cylinder water-cooled direct injection engine. The variables analyzed are energy and exergy potential of fuel input, shaft work, cooling water, maximum pressure, heat release rate, exergy destruction, brake-specific energy consumption, brake thermal efficiency, second law efficiency, entropy generation, exhaust gas temperature and various emissions. It is observed that the combination of CR 20, B20 and B40 at 80% load gives a better performance in thermodynamic analysis of methyl esters of rubber seed oil blended with diesel in VCR engine.

  相似文献   

4.
In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper–chlorine (Cu–Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to ~950 K, at a high COP of ~6.5. Based on measured data available in past literature, the authors have determined the Ts diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches ~2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper–chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at ~950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by internal heat recovery, and the energy needed at the heat pump evaporator), and the other is the specific heat pump work per mole of hydrogen produced. This new heat pump with CuCl as a working fluid can be attractive in other industrial contexts where high temperature heat is needed. One may replace a common heating technology (combustion or electric heating) with the present sustainable method that uses heat recovery and high efficiency temperature upgrading for heating applications.  相似文献   

5.

The thermal performance of a flat-plate solar collector (FPSC) is investigated experimentally and analytically. The studied nanofluid is SiO2/deionized water with volumetric concentration up to 0.6% and nanoparticles diameter of 20–30 nm. The tests and also the modeling are performed based on ASHRAE standard and compared with each other to validate the developed model. The dynamic model is based on the energy balance in a control volume. The system of derived equations is solved by employing an implicit finite difference scheme. Moreover, the thermal conductivity and viscosity of SiO2 nanofluid have been investigated thoroughly. The measurement findings indicate that silica nanoparticles, despite their low thermal conductivity, have a great potential for improving the thermal performance of FPSC. Analyzing the characteristic parameters of solar collector efficiency reveals that the effect of nanoparticles on the performance improvement is more pronounced at higher values of reduced temperature. The thermal efficiency, working fluid outlet temperature and also absorber plate temperature of the modeling have been confirmed with experimental verification. A satisfactory agreement has been achieved between the results. The maximum percentage of deviation for working fluid outlet temperature and collector absorber plate temperature is 0.7% and 3.7%, respectively.

  相似文献   

6.

Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluid in which nanoparticles are dispersed in a base fluid and have generally a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. Graphene/water nanofluid with a concentration of 1 mg mL?1 and TiO2 (titania)/water nanofluid with a concentration of 10 mg mL?1 are used as the working fluids. To simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section is used. A one-turn Pyrex PHP is also used to fully visualize flow patterns in the PHP. Our results show that the material for the fabrication of a PHP and temperature of the working fluid are the most important parameters that affect the stability of a nanofluid in the PHP. The more stable nanofluid keeps its stability in the cupper PHP, while the less stable nanofluid starts to aggregate right after the injection to the cupper PHP. The more stable nanofluid has a better thermal performance than water, while the less stable nanofluid has a worse thermal performance than water. In the case of flow regimes, no significant differences are observed between the nanofluid PHP and the water PHP which is different from the previous observations. These results can help researchers to choose the best working fluid for PHPs.

  相似文献   

7.
The efficiency of energy collection of a flat plate type of solar air heater is low because of the large thermal losses and low heat transfer coefficient between the absorber plate and the air flowing in the duct. Packed beds have been successfully employed for the enhancement of the heat transfer coefficients in solar air heaters and such air heaters can be used for drying agricultural produce and space heating as well. This article deals with the theoretical investigation on the effects of thermal conductivity of material and geometry of a screen on the temperature variation in woven wire screen packed bed solar air heater. Theoretical results have been compared with the experimental results reported earlier by other researchers and found to match reasonably well with them. It has been found that the thermal performance depends upon a little on the thermal conductivity of screen material. Instead, it depends more on the geometry and an extinction coefficients of the matrix. A low value of extinction coefficient is desirable for maximum absorption of solar radiations and minimum thermal losses. The numerical method of analysis used here is based on finite difference approximation. The finite difference equations have been solved through a computer program in C++.  相似文献   

8.
New approaches to the analysis of differential scanning calorimetry (DSC) data relating to proteins undergoing irreversible thermal denaturation have been demonstrated. The experimental approaches include obtaining a set of DSC curves at various scanning rates and protein concentrations, and also reheating experiments. The mathematical methods of analysis include construction of a linear anamorphosis and simultaneous fitting of a theoretical expression for the dependence of the excess heat capacity on temperature to a set of experimental DSC curves. Different kinetic models are discussed: the one-step irreversible model, the model including two consecutive irreversible steps, the Lumry and Eyring model with a fast equilibrating first step, and the whole kinetic Lumry and Eyring model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.

In this paper, the effects of pure water, SiO2/water nanofluid, and a phase-change material (PCM) as coolants on the performance of a photovoltaic thermal (PVT) system are numerically investigated. The simulations are performed on two modules of PVT with PCM (PVT/PCM module) and without (PVT module). Parameters including PV surface temperature, thermal, and electrical efficiencies of the systems are studied and compared with each other. Moreover, the results of nanofluid as a working fluid is compared with those obtained using pure water. The results show that in the water-based PVT/PCM, the average PV cell temperature is decreased by 16 °C compared to that of the PVT system. This results in an increase of 8% in the electrical efficiency and 25% in the thermal efficiency. In addition, using nanofluid (SiO2 with 1 and 3 mass% mass fraction) as a coolant in the PVT/PCM system increases the thermal efficiency by 3.51% and 10.40%, for 1 and 3 mass%, respectively, compared to that of the PVT/PCM with pure water as a coolant. This study shows that increasing the melting temperature of the phase-change material leads to an increase in the thermal efficiency of the PVT/PCM system.

  相似文献   

10.
The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The rheological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid.  相似文献   

11.
Molecular dynamics (MD) simulations were performed to investigate the structural features and transport properties of C60 in liquid argon. The results reveal that an organized structure shell of liquid argon is formed close to the surface of a C60 fullerene molecule, thereby changing the solid/liquid interfacial structure. Furthermore, the simulation indicates that the C60-liquid argon fluid becomes structurally more stable as the C60 molecule volume fraction and the temperature increase. The viscosity of the fluid increases significantly as the C60 molecule loading is increased, particularly at a lower temperature. The thermal conductivity enhancement of the fluid in the present simulations is anomalously an order of magnitude higher than the theoretical predictions from either the Maxwell or the Lu and Liu models, and is found to vary approximately linearly with the C60 molecule volume fraction. The increased thermal conductivity is attributed to the nature of heat conduction in C60 molecule suspensions and an organized structure at the solid/liquid interface.  相似文献   

12.
熊钰  莫军  李佩斯  蒋军  张烈辉 《化学通报》2018,81(7):646-652
通过向致密储层中注入干化剂,使其与地层水发生干化反应能够消耗地层水、降低储层含水饱和度,从而提高气体渗流能力。以致密气藏干化原理为基础,对所选干化剂进行原理性干化实验发现,干化剂实际耗水量大于理论耗水量。分析认为,干化剂实际干化效果还受化学反应热效应的影响。本文以热化学理论为基础,研究了干化剂与水反应的热效应及其对干化效果的影响。并考虑到实际地层往往处于不同的温度和压力条件下,故对干化反应热效应随体系温度和压力的变化情况做了研究。结果表明,所选干化剂与水反应能够放出约5.28k J/g的热量,放出的热量能够使反应速率加快和使部分水分子蒸发成气相从而提高干化效率;干化剂化学反应热随温度和压力的升高而增加,但增加速率较小;温度和压力的变化对热蒸发耗水量影响较小。  相似文献   

13.
Abstract

The existing measurements and theories of the low-temperature thermal properties, heat capacity, and thermal conductivity of polymers are reviewed with particular attention paid to the differences between partly crystalline and amorphous polymers. The most striking feature of the low-temperature heat capacity of polymers is that in the liquid helium temperature range the heat capacity does not depend upon the cube of the temperature as for other solids. Further, only well below 1°K does the heat capacity approach the value predicted on the basis of the sound velocity. This behavior indicates the presence of a small number of low-frequency modes of vibration in the frequency spectrum. The fact that such anomalous behavior seems linearly related to the crystallinity implies that this behavior is associated with the amorphous structure, perhaps with motions of pendent groups within cavities formed in the amorphous structure. The thermal conductivity of semicrystalline and amorphous polymers differs considerably. Semicrystalline polymers display a temperature dependence of the thermal conductivity similar to that obtained from highly imperfect crystals, the thermal conductivity having a maximum in the temperature range near 100°K which moves to lower temperatures and higher thermal conductivities as the crystallinity is increased. Amorphous polymers display a temperature dependence similar to that obtained for glasses with no maximum but a significant plateau region in the range between 5 and 15°K. The theoretical interpretation of the thermal conductivity of these materials is considered.  相似文献   

14.
Two dimensional incompressible steady viscous nano-fluid flow with the impacts of heat generation and porous medium is examined numerically. For this objective Ti6Al4v are taken as nano-particles dispersed in different base fluids such as methanol, engine oil and water. Basically in this study we will compare three different nano-fluids to assess their flow behaviour and thermal performance. The flow model is developed under certain assumptions. The two dimensional non-linear PDEs are converted into non-linear ODEs with suitable transformation. The numerical procedure is adopted to find the results by using Bvp4c technique in MATLAB. Moreover, graphs are generated for various parameters against the temperature and velocity profiles. The fluid behaviour for different parameter is examined on velocity and temperature profile. It is depicted that for high values of volume fraction and curvature parameter nano-particles leads to high velocity and temperature profile. Moreover, velocity profile decreases for permeability parameter, while temperature profile enhances for heat generation parameter. The influence of Nusselt number and skin friction also assessed. The model of entropy generation is also presented.  相似文献   

15.
用精密绝热量热法测量了高效热管传热工质在78~320 K温区内的热容.结果表明,在78.41~245.19 K, Cp/(J•K-1•g-1)=0.5369T+0.07279.在274.08~318.51 K, Cp/(J•K-1•g-1)=3.403±0.020.在245~274 K, 高效热管传热工质发生固液相变.其相变温度、相变焓和相变熵分别是271.21 K、353.6 J•g-1,和1.304 J•K-1•g-1.根据热容与温度的定量关系和热力学函数之间的关系,得到了以标准温度298.15 K为基准的高效热管传热工质的热力学函数.  相似文献   

16.
Xuan X  Li D 《Electrophoresis》2005,26(1):166-175
It is widely accepted that Joule heating effects yield radial temperature gradients in capillary zone electrophoresis (CZE). The resultant parabolic profile of electrophoretic velocity of analyte molecules is believed to increase the band-broadening via Taylor-Aris dispersion. This typically insignificant contribution, however, cannot explain the decrease in separation efficiency at high electric fields. We show that the additional band-broadening due to axial temperature gradients may provide the answer. These axial temperature variations result from the change of heat transfer condition along the capillary, which is often present in CZE with thermostating. In this case, the electric field becomes nonuniform due to the temperature dependence of fluid conductivity, and hence the induced pressure gradient is brought about to meet the mass continuity. This modification of the electroosmotic flow pattern can cause significant band-broadening. An analytical model is developed to predict the band-broadening in CZE with axial temperature gradients in terms of the theoretical plate height. We find that the resultant thermal plate height can be very high and even comparable to that due to molecular diffusion. This thermal plate height is much higher than that due to radial temperature gradients alone. The analytical model explains successfully the phenomena observed in previous experiments.  相似文献   

17.

As a clean and sustainable energy source, hydrogen is widely considered as an engine fuel by top researchers. In view of the fact that the uneven fuel mixture of diesel fuel deteriorated the combustion and emissions process, it is expected to adopt diesel and hydrogen dual-fuel combustion technology to optimize combustion and heat release of diesel engine. In this study, experiments are carried out on a diesel engine and the combustion characteristics of the engine with different hydrogen ratios (RH) are compared. It has been found that hydrogen addition is conducive to accelerate the heat release rate and improve the thermal efficiency. Specifically, compared with pure diesel conditions, the peak pressure increased by 7.7% and the cumulative heat release rate increased by 3.7% under the condition of RH of 20%. Moreover, although the effect on the ignition delay period is not clear, the higher RH brings about earlier heat release center and more cumulative heat release while enhancing the heat release of premixed combustion reducing the diffusion combustion and post-combustion.

  相似文献   

18.
This article presents finite-time thermodynamics analysis of an irreversible air standard dual cycle. An irreversible dual cycle model which is more close to practice is established. In this model, the effects of stroke length and volume efficiency by considering the nonlinear relation between the specific heats of working fluid and its temperature, the frictional loss, the internal irreversibility, and heat transfer loss are analyzed. The results show that if compression ratio is less than certain value, the power output increases with increasing stroke length, while if compression ratio exceeds certain value, the power output first increases and then starts to decrease with increasing stroke length. With further increase in compression ratio, the increase of stroke length results in decreasing the power output. The results also show that, throughout the compression ratio range, the power output increases with the increasing volumetric efficiency. The results obtained in this study are of importance to provide good guidance for performance evaluation and improvement of practical internal combustion engines.  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - Low global warming potential working fluid R1234ze(Z) is anticipated to be the working fluid of the choice for the moderately high temperature heat...  相似文献   

20.
A new way of ascertaining whether or not a reacting mixture will explode uses just three timescales: that for chemical reaction to heat up the fluid containing the reactants and products, the timescale for heat conduction out of the reactor, and the timescale for natural convection in the fluid. This approach is developed for an nth order chemical reaction, A --> B occurring exothermically in a spherical, batch reactor without significant consumption of A. The three timescales are expressed in terms of the physical and chemical parameters of the system. Numerical simulations are performed for laminar natural convection occurring; also, a theoretical relation is developed for turbulent flow. These theoretical and numerical results agree well with previous experimental measurements for the decomposition of azomethane in the gas phase. The new theory developed here is compared with Frank-Kamenetskii's classical criterion for explosion. This new treatment has the advantage of separating the two effects inhibiting explosion, viz. heat removal by thermal conduction and by natural convection. Also, the approach is easily generalised to more complex reactions and flow systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号