共查询到20条相似文献,搜索用时 15 毫秒
1.
利用分子动力学模拟方法和反应力场势函数研究了Al/SiO_2层状纳米体系的铝热反应,模拟了在不同初始温度下(600,700,800,900,1000和1100 K)绝热反应的结构变化和能量性质,发现Al/SiO_2体系的铝热反应是自加热的氧化还原反应,当初始温度为900和1000 K时,Al经历了熔化前的一个临界状态,与SiO_2的铝热反应比较活跃,系统温度随着反应时间的增加不断升高,当初始温度为600,700,800和1100 K时,初始温度越高,在Al和SiO_2界面形成的Al-O层越薄,系统发生铝热反应达到的最终绝热温度越高,所用的时间(有效反应时间τ)越短,即界面扩散阻挡层的厚度对铝热反应的自加热速率产生了影响,初始温度为600,700,800,1100K时的自加热速率分别为3.4,3.5,4.7和5.4K/p8.A1/SiO_2体系的铝热反应析出了Si单质,与实验结果相符合。 相似文献
2.
ReaxFF/lg势函数是在ReaxFF的基础上增加了对范德华引力的描述, 因此可以更好地用于描述晶体密度和结构, 而含能材料密度很大程度上影响着爆轰的宏观性质(如爆速、反应区宽度、能量输出结构等). 本文采用ReaxFF/lg反应力场分析了高温条件下凝聚相CL20-TNT共晶的初始分解情况, 并通过简单的指数函数拟合势能演化曲线获得了平衡和诱导期以及整体反应时间, 随后通过反应速率方程得到了共晶热解的活化能Ea (185.052 kJ/mol). CL20-TNT共晶热解过程中CL20分子均在TNT之前分解完毕, 并且随着温度的升高, TNT的分解速率明显加快, 温度越高二者完全分解所需的时间越接近. 有限时间步长下的产物识别分析显示主要产物为NO2, NO, CO2, N2, H2O, HON, HNO3. NO2是C–NO2和N–NO2键均裂共同贡献的结果, 其产量快速地增加, 达到峰值后开始减少, 此过程伴随着NO2参与其他反应使得NO2中的N原子进入到其他的含N 分子中. 次要产物主要为CO, N2O, N2O5, CHO. N2O具有很强的氧化能力, 使其分布有着剧烈的波动特征.
关键词:
共晶结构
高温热解
ReaxFF/lg 势函数
分子动力学 相似文献
3.
Molecular dynamics simulations of the displacement cascades in Fe-10%Cr systems are used to simulate the primary knocked-on atom events of the irradiation damage at temperatures 300,600,and 750 K with primary knockedon atom energies between 1 and 15 keV.The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade.During the cascade,all recoil Fe and Cr atoms combine with each other to form Fe-Cr or Fe-Fe interstitial dumbbells as well as interstitial clusters.The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature.A few large clusters consist of a large number of Fe interstitials with a few Cr atoms,the rest are Fe-Cr clusters with small and medium sizes.The interstitial dumbbells of Fe-Fe and Fe-Cr are in the 111 and 110 series directions,respectively. 相似文献
4.
Molecular dynamics simulations of the displacement cascades in Fe-10%Cr systems are used to simulate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knocked-on atom energies between 1 and 15 keV. The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade. During the cascade, all recoil Fe and Cr atoms combine with each other to form Fe-Cr or Fe-Fe interstitial dumbbells as well as interstitial clusters. The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature. A few large clusters consist of a large number of Fe interstitials with a few Cr atoms, the rest are Fe-Cr clusters with small and medium sizes. The interstitial dumbbells of Fe-Fe and Fe-Cr are in the lan111ran and lan110ran series directions, respectively. 相似文献
5.
从非经验参数角度构建基于两原子模型的FexO-SiO2-CaO-MgO-"NiO"渣的势函数,利用分子动力学模拟揭示调控镍渣组分与结构及物理化学性能之间的关系。结果表明: BMH(Born-Mayer-Huggins)势函数能够较好表征FexO-SiO2-CaO-MgO-"NiO"系镍渣的势能。当镍渣中CaO含量为15 wt.%时,Si4+-Si4+间配位数最小,此时熔渣的聚合度最低,有利于扩散。当Fe元素由Fe2+转换为Fe3+后,和O2-结合能力更强,会导致熔渣更难以扩散,因而镍渣的黏度迅速升高,造成冶炼条件恶化,因此在镍闪速熔炼时要严格控制Fe2+/Fe3+的比例。模拟计算的黏度与实测值吻合较好,表明构建的势函数能够较好地反映镍渣的物化性能。 相似文献
6.
通过分子动力学方法模拟了在常温常压下(1 atm, 298 K)和在压水堆环境下(155 atm, 626 K), 水分子数为256, 氢分子数为0, 25, 50, 75和100等不同数目时, 粒子系统的动力学性质和微观结构, 分析了不同氢气对水中溶解氧的影响. 从模拟结果可知, 在常温常压和压水堆环境下, 当氢粒子数分别为0, 25, 50, 75和100时, 粒子系统的均方位移会随氢分子数增加而增加, 并且常温常压下的增长幅度远小于压水堆环境下的增长幅度, 如压水堆环境下氢分子数为75时系统的均方位移约是常温常压下氢分子数为75时系统的均方位移的6.02倍, 比压水堆环境下氢分子数0时系统的均方位移增加了131.88%. 此外, 粒子系统的微观结构, 从径向分布函数看, 在常温常压下随着氢分子数目的增加而小幅度增加, 这与常温常压下因氢气溶解在水中增大了氧离子周围的粒子密度相符合. 而在压水堆环境下, 氢分子数为75, 50, 25与为0时的水比较, 其径向分布均不会有太大的变化, 而分子数为100时会出现明显增加, 与为0时的水比较其径向分布增加了22.00%. 模拟结果表明, 往压水堆中的水加入氢气能明显地抑制水中的溶解氧. 相似文献
7.
Molecular dynamics study of two-and three-dimensional classical fluids using double Yukawa potential
We have carried out a molecular dynamics simulation of two- and three-dimensional double Yukawa fluids near the triple point.
We have compared some of the static and dynamic correlation functions with those of Lennard—Jones, when parameters occurring
in double Yukawa potential are chosen to fit Lennard-Jones potential. The results are in good agreement. However, when repulsive
and attractive parameters occurring in double Yukawa potential are varied, we found distinct differences in static and dynamic
correlation functions. We have also compared the two-dimensional correlation functions with those of three-dimensional to
study the effect of dimensionality, near the triple point region. 相似文献
8.
Heat conduction in single-walled carbon nanotubes(SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes(MWCNTs). The thermal conductivities of the double-walled carbon nanotubes(DWCNTs) with two different temperature control methods are studied by using molecular dynamics(MD) simulations. One case is that the heat baths(HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the interwall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently.This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs. 相似文献
9.
Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure 下载免费PDF全文
We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water.Using molecular dynamics simulations,we demonstrate that the wet/dry state between the graphene sheets can be self-latched;moreover,the wet→dry/dry→wet transition takes place when applying an external electric field perpendicular/parallel to the graphene sheets(E;/E;).This structure works like a flash memory device(a non-volatile memory):the stored information(wet and dry states)of the system can be kept spontaneously,and can also be rewritten by external electric fields.On the one hand,when the distance between the two nanosheets is close to a certain distance,the free energy barriers for the transitions dry→wet and wet→dry can be quite large.As a result,the wet and dry states are self-latched.On the other hand,an E;and an E;will respectively increase and decrease the free energy of the water located in-between the two nanosheets.Consequently,the wet→dry and dry→wet transitions are observed.Our results may be useful for designing novel information memory devices. 相似文献
10.
脱氧核糖核酸(DNA)的结构柔性对DNA生物功能的实现具有重要作用,全原子分子动力学模拟是一种研究DNA结构柔性的重要方法.DNA的分子动力学力场在Amber bsc0基础上有了进一步的发展,即Amber bsc1.本文采用基于最新bsc1力场和先前bsc0力场的分子动力学模拟对DNA的宏观柔性和微观柔性进行对比研究,发现力场的改进对DNA宏观柔性参量的预测有一定改善,即所预测的拉伸模量和扭转-伸缩耦合比与实验值更为接近,而弯曲持久长度和扭转持久长度两种力场结果皆与实验值一致.微观分析发现,除了滑移量稍变大,bsc1力场得到的微观结构参量如扭转角和倾斜角与实验值更为接近,且新力场下DNA宏观柔性的改善与DNA的微观结构参量及其涨落紧密相关. 相似文献
11.
Hui-Li Wang 《Frontiers of Physics》2018,13(3):138107
In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2. 相似文献
12.
Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations 下载免费PDF全文
The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function(RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al–Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al–Ti atoms for the low cooling rate. 相似文献
13.
Yoshiyuki Shirakawa Yusuke Hayashi Kazunori Kadota Hiroshi Mio Hiroto Ohtsuki Atsuko Shimosaka Jusuke Hidaka 《Journal of nanoparticle research》2008,10(4):577-584
In our previous paper, structural changes of selenium powders ground by a planetary ball mill at various rotational speeds
were investigated for the nanostructural modification of particles using mechanical grinding process. The experimental results
indicated that the amorphisation of Se by grinding accompanies lattice strain, and the lattice strain arises from impact energy
which is more than an energy related to intermolecular interaction. In this paper, molecular dynamics simulations of selenium
have been carried out under compressing conditions of various pressure strengths for obtaining information of the lattice
strain at atomic level. Then, dynamical behaviour of atomic configuration has been discussed in this process. The structural
disordering and formation of the structural defects were estimated by deviations of bond length and angle and the number of
created defects before and after compressing from simulated results. The disordering took place during compressing at various
pressure strengths, and the disordered atoms return to their initial positions at lower pressure. Stable disordered state
and defects after the compression can however remain by compression at more than a certain pressure strength mainly associated
with binding energy of selenium. 相似文献
14.
D. Bahamon 《Molecular physics》2019,117(23-24):3703-3714
We present here non-equilibrium molecular dynamic simulations concerning the separation of phenol and ibuprofen as impurities compounds (ICs) in water by novel graphene oxide (GO) membranes. The coupling between water permeability and impurity rejection is studied as a function of membrane thickness and concentration, focusing on the underlying molecular phenomena. Results show that water permeability decreases as the number of layers increases. Moreover, molecular sieving can be achieved by tuning the number of GO layers and the surface chemistry of the sheet: water flow through layers is up to 20% faster than that in graphene layers, because of strong hydrogen bonded interactions with the oxygenated groups. Analysis of the simulation results suggests that upon adsorbing on the GO surface, the translational motion of ICs in water would be supressed. Nevertheless, hydrophilicity affects the permeability for membranes with high O/C ratio, owing to these strong hydrogen bonds. Furthermore, 100% rejection for the ICs can be obtained for most of the GO membranes with four layers. This study elucidates the important role of hydrophilic interactions in GO membranes to become ideal candidates for removal of organic pollutants from water, showing the applicability of molecular simulations to obtain molecular insights into this problem. 相似文献
15.
16.
Molecular dynamics simulations of cascade damage near the Y_2Ti_2O_7 nanocluster/ferrite interface in nanostructured ferritic alloys 下载免费PDF全文
A comparative study of cascades in nanostructured ferritic alloys and pure Fe is performed to reveal the influence of Y_2Ti_2O_7 nanocluster on cascades by molecular dynamics simulations. The cascades with energies of primary knock-on atom(PKA) ranging from 0.5 keV to 4.0 keV and PKA's distances to the interface from 0 to 50 are simulated. It turns out that the Y_2Ti_2O_7 nanocluster can absorb the kinetic energy of cascade atoms, prevent the cascade from extending and reduce the defect production significantly when the cascades overlap with the nanocluster. When the cascade affects seriously the nanocluster, the weak sub-cascade collisions are rebounded by the nanocluster and thus leave more interstitials in the matrix. On the contrary, when the cascade contacts weakly the nanocluster, the interface can pin the arrived interstitials and this leaves more vacancies in the matrix. Moreover, the results indicate that the Y_2Ti_2O_7 nanocluster keeps stable upon the displacement cascade damage. 相似文献
17.
Molecular dynamics study of swelling patterns of Na/Cs-montmorillonites and hydration of interlayer cations 下载免费PDF全文
We report on a molecular dynamics study of swelling patterns of an Na-rich/Cs-poor montomorillonite and a Cs-montomorillonite. The recently developed CLAYFF force field is used to predict the basal spacing as a function of the water content in the interlayer. The simulations reproduce the swelling patterns of the Na and Cs-montomorillonite, suggesting a mechanism of its hydration different from that of the montomorillonite. In the meanwhile, we find that the differences in size and hydration energy of Na and Cs ions have strong implications for the structure and the internal energy of interlayer water. In particular, our results indicate that the hydrate difference in the presence of coexistent Na and Cs has a larger influence on the behavior of clay-water system. For Na-rich/Cs-poor montomorillonite, the hydration energy values of Na ions and water molecules each have a dramatic increase compared with those in Na-montomorillonite on the interlayer spacing, and the hydration energy values of Cs ions and water molecules decrease somewhat compared with those in Cs-montomorillonite. 相似文献
18.
应用分子模拟方法,建立了聚酰亚胺(polyimide,PI),石墨烯及羧基、氨基、羟基功能化石墨烯模型,探究了聚酰亚胺和石墨烯,聚酰亚胺和功能化石墨烯共混后复合材料的力学性能和玻璃化转变温度(T_g).研究结果表明,羧基修饰的石墨烯与PI复合后材料力学性能增加显著,其杨氏模量和剪切模量分别为4.946 GPa和1.816 GPa.不同官能团修饰的石墨烯引入PI后材料的T_g均有不同程度下降;未修饰的石墨烯与PI复合后,其T_g(559.30 K)较纯PI的T_g(663.57 K)降幅最大;而羧基修饰的石墨烯与PI复合后T_g(601.61 K)降幅最小.计算比较了PI/石墨烯复合材料体系密度、溶解度参数、相互作用能、弹性系数和氢键平均密度,研究发现羧基修饰石墨烯/PI复合材料的密度为1.396 g·cm~(-3),溶解度参数为23.51 J~(1/2)·cm~(-3/2),其相互作用能与氢键平均密度最大,弹性系数显示羧基修饰石墨烯与PI组成的复合材料内部最均匀.计算结果表明,羧基功能化石墨烯可以大幅度提高PI的力学性能,增强石墨烯与PI之间的相互作用可以减少复合材料T_g的降幅程度.此基体间相互作用的研究方法可以作为预测聚合物基纳米复合材料结构与性能的有效工具,以期为材料的设计与应用提供理论指导. 相似文献
19.
Joseph Costandy Vasileios K. Michalis Athanassios K. Stubos Ioannis G. Economou 《Molecular physics》2016,114(18):2672-2687
ABSTRACTWe report extensive molecular dynamics simulation results of pure methane and carbon dioxide hydrates at pressure and temperature conditions that are of interest to various practical applications. We focus on the calculation of the lattice constants of the two pure hydrates and their dependence on pressure and temperature. The calculated lattice constants are correlated using second order polynomials which are functions of either temperature or pressure. Finally, the obtained correlations are used in order to calculate two derivative properties, namely the isothermal compressibility and the isobaric thermal expansion coefficient. The current simulation results are also compared against reported experimental measurements and other simulation studies and good agreement is found for the case of isothermal compressibility. On the other hand, for the case of isobaric thermal expansion coefficient good agreement is found only with other simulation studies, while the simulation studies are in disagreement with experiments, particularly at low temperatures. 相似文献
20.
M. Lindenblatt 《Surface science》2006,600(18):3624-3628
Time-dependent density functional theory for the electronic degrees of freedom has been combined with Ehrenfest dynamics for the nuclei to simulate electron-hole pair excitation due to electronic friction during the chemisorption of hydrogen atoms on an Al(1 1 1) surface. The H-atoms are assumed to be spin-unpolarized in the simulations. Trajectories starting with a hydrogen atom at rest above either the on-top or the fcc-hollow site evolve in qualitatively very different ways: at the fcc-hollow position the H-atom acquires sufficient kinetic energy in the chemisorption well to penetrate into the Al-substrate, thereby increasing the coupling of the motion of the H-atom to the substrate electrons. The electronic excitation spectra, however, are roughly characterized by an exponential decay with similar fictitious temperature parameters of the order of 103 K for both kinds of trajectories. The energy dissipation into electron-hole pairs and the nonadiabatic contribution to the force acting on the hydrogen atom have been calculated along the trajectories. 相似文献