首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
严祥传  孙大立  王璐  闵靖  彭世国  江开军 《中国物理 B》2022,31(1):16701-016701
We observe characteristic atomic behaviors in the Bose-Einstein-condensation-Bardeen-Cooper-Schrieffer(BEC-BCS)crossover,by accurately tuning the magnetic field across the Feshbach resonance of lithium atoms.The magnetic field is calibrated by measuring the Zeeman shift of the optical transition.A non-monotonic anisotropic expansion is observed across the Feshbach resonance.The density distribution is explored in different interacting regimes,where a condensate of diatomic molecules forms in the BEC limit with the indication of a bimodal distribution.We also measure the three-body recombination atom loss in the BEC-BCS crossover,and find that the magnetic field of the maximum atom loss is in the BEC limit and gets closer to the Feshbach resonance when decreasing the atom temperature,which agrees with previous experiments and theoretical prediction.This work builds up a controllable platform for the study on the strongly interacting Fermi gas.  相似文献   

2.
黄良辉  王鹏军  付正坤  张靖 《中国物理 B》2014,23(1):13402-013402
We create weakly bound Feshbach molecules in ultracold Fermi gas40K by sweeping a magnetic field across a broad Feshbach resonance point 202.2 G with a rate of 20 ms/G and perform the dissociation process using radio-frequency(RF) technology. From RF spectroscopy, we obtain the binding energy of the weakly bound molecules in the vicinity of Feshbach resonance. Our measurement also shows that the number of atoms generated from the dissociation process is different at various magnetic fields with the same RF amplitude, which gives us a deeper understanding of weakly bound Feshbach molecules.  相似文献   

3.
We create weakly bound Feshbach molecules in ultracold Fermi gas 4~K by sweeping a magnetic field across a broad Feshbach resonance point 202.2 G with a rate of 20 ms/G and perform the dissociation process using radio-frequency (RF) technology. From RF spectroscopy, we obtain the binding energy of the weakly bound molecules in the vicinity of Feshbach resonance. Our measurement also shows that the number of atoms generated from the dissociation process is different at various magnetic fields with the same RF amplitude, which gives us a deeper understanding of weakly bound Feshbach molecules.  相似文献   

4.
The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calculate the ground and higher excited resonances accurately and efficiently. The resonance parameters with accuracies of 10^-9 - 10^-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones. Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.  相似文献   

5.
We report on the production of an ultracold mixture of 2.8×10423Na40K molecules and 3.3×10540K atoms at a temperature of about 250 n K.Compared with previous studies,the number of atoms and molecules improved by a factor of about 2,and the temperature reduced by a factor of about 2.These improvements occur mainly because of the use of a crossed large-volume horizontal dipole trap to load the atoms from a cloverleaf-type magnetic trap,and a large-volume three-beam dipole trap to perform optical evaporative cooling.Besides achieving the mode-matching loading,this method avoids evaporative cooling in a decompressed cloverleaf magnetic trap,which is sensitive to magnetic field fluctuations.We characterize an atom-molecule Feshbach resonance using the ultracold atom-molecule mixture.The enhancement of particle number and temperature significantly improves the signal-to-noise ratio,and enables us to refine the location and width of the Feshbach resonance.  相似文献   

6.
We demonstrate via first-principle calculations based on the density functional theory that the magnetic moment of a helium atom under a given magnetic field has a positive correlation with the electric dipole moment when an external electric field is applied to the system. Our calculation shows that the enhancement of the magnetic moment is significant due to the reduction of the tripletsinglet splitting. We argue that this finding can be generalized to organic molecules, especially to macromol...  相似文献   

7.
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference AE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.  相似文献   

8.
We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak.  相似文献   

9.
We describe a method to generate an ultra-slow atomic beam by velocity selective resonance (VSR). A VSR experiment on a metastable helium beam in a magnetic field is presented and the results show that the transverse velocity of the deflected beam can be cooled and precisely controlled to less than the recoil velocity, depending on the magnitude of the magnetic field. We extend this idea to a cold atomic cloud to produce an ultra-slow 87Rb beam that can be used as a source of an atomic fountain clock or a space clock.  相似文献   

10.
We have calculated variationally the ground state binding energy of a hydrogenic donor impurity in a parabolic quantum well in the presence of crossed electric and magnetic fields. These homogeneous crossed fields are such that the magnetic field is parallel to the heterostructure layers and the electric field is applied perpendicular to the magnetic field. The dependence of the donor impurity binding energy to the well width and the strength of the electric and magnetic fields are discussed. We hope that the obtained results will provide important improvements in device applications, especially for a suitable choice of both fields in the narrow well widths.  相似文献   

11.
The scattering length is commonly used to characterize the strength of ultracold atomic interactions, since it is the leading parameter in the low-energy expansion of the scattering phase shift. Its value can be modified via a magnetic field, by using a Feshbach resonance. However, the effective range term, which is the second parameter in the phase shift expansion, determines the width of the resonance and gives rise to important properties of ultracold gases. Independent control over this parameter is not possible by using a magnetic field only. We demonstrate that a combination of magnetic and electric fields can be used to get independent control over both parameters, which leads to full control over elastic ultracold interactions.  相似文献   

12.
We report a dramatic magnetic-field dependence in the lifetime of trapped, ultracold diatomic molecules created through an s-wave Feshbach resonance between fermionic atoms. The molecule lifetime increases from less than 1 ms away from the Feshbach resonance to greater than 100 ms near resonance. We also have measured the trapped atom lifetime as a function of magnetic field near the Feshbach resonance; we find that the atom loss is more pronounced on the side of the resonance containing the molecular bound state.  相似文献   

13.
It is demonstrated that elastic collisions of ultracold atoms forming a heteronuclear collision complex can be manipulated by laboratory practicable dc electric fields. The mechanism of electric field control is based on the interaction of the instantaneous dipole moment of the collision pair with external electric fields. It is shown that this interaction is dramatically enhanced in the presence of a p-wave shape or Feshbach scattering resonance near the collision threshold, which leads to novel electric-field-induced Feshbach resonances.  相似文献   

14.
In this article, we review our recent theoretical works on producing ultracold molecules from ultracold bosonic atoms via magnetically tunable Feshbach resonances. Our analysis relies on a two-channel quantum microscopic model that accounts for many-body effects in the association process. We show that the picture of two-body molecular production depicted by the Landau-Zener model is significantly altered due to many-body effects. We derive an analytic expression for molecular conversion efficiency for the nonadiabatic linearly swept Feshbach resonance, that explains the discrepancy between the prediction of the Landau-Zener formula and the experimental data. With including the thermal dephasing effects in the oscillating magnetic field modulation Feshbach resoance, we reproduce the Lorentzian resonance lineshape and explain the maximum conversion efficiency observed in experiment.  相似文献   

15.
We report on the creation of ultracold heteronuclear molecules assembled from fermionic 40K and bosonic 87Rb atoms in a 3D optical lattice. Molecules are produced at a heteronuclear Feshbach resonance on both the attractive and the repulsive sides of the resonance. We precisely determine the binding energy of the heteronuclear molecules from rf spectroscopy across the Feshbach resonance. We characterize the lifetime of the molecular sample as a function of magnetic field and measure lifetimes between 20 and 120 ms. The efficiency of molecule creation via rf association is measured and is found to decrease as expected for more deeply bound molecules.  相似文献   

16.
We have observed Bose-Einstein condensation of pairs of fermionic atoms in an ultracold 6Li gas at magnetic fields above a Feshbach resonance, where no stable 6Li2 molecules would exist in vacuum. We accurately determined the position of the resonance to be 822+/-3 G. Molecular Bose-Einstein condensates were detected after a fast magnetic field ramp, which transferred pairs of atoms at close distances into bound molecules. Condensate fractions as high as 80% were obtained. The large condensate fractions are interpreted in terms of preexisting molecules which are quasistable even above the two-body Feshbach resonance due to the presence of the degenerate Fermi gas.  相似文献   

17.
We investigate the production efficiency of ultracold molecules in bosonic 85Rb and fermionic 40K when the magnetic field is swept across a Feshbach resonance. For adiabatic sweeps of the magnetic field, our novel model shows that the conversion efficiency of both species is solely determined by the phase space density of the atomic cloud, in contrast with a number of theoretical predictions. In the nonadiabatic regime our measurements of the 85Rb molecule conversion efficiency follow a Landau-Zener model.  相似文献   

18.
We studied the magnetic field dependence of the inelastic decay of an ultracold, optically trapped fermionic 6Li gas of different spin compositions. The spin mixture of the two lowest hyperfine states showed two decay resonances at 550 and 680 G, consistent with the predicted Feshbach resonances for elastic s-wave collisions. The observed lifetimes of several hundred ms are much longer than the expected time for Cooper pair formation and the phase transition to superfluidity in the vicinity of the Feshbach resonance.  相似文献   

19.
We measure the effect of a magnetic Feshbach resonance (FR) on the rate and light-induced frequency shift of a photoassociation resonance in ultracold 7Li. The photoassociation-induced loss-rate coefficient K_{p} depends strongly on magnetic field, varying by more than a factor of 10;{4} for fields near the FR. At sufficiently high laser intensities, K_{p} for a thermal gas decreases with increasing intensity, while saturation is observed for the first time in a Bose-Einstein condensate. The frequency shift is also strongly field dependent and exhibits an anomalous blueshift for fields just below the FR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号