首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
张志勇  贠江妮  张富春 《中国物理》2007,16(9):2791-2797
The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration.  相似文献   

2.
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is determined to be a Si_(170) cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300 meV, which is a result of the large capacitance of a small silicon quantum dot(~1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10 meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.  相似文献   

3.
The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.  相似文献   

4.
《中国物理 B》2021,30(10):106807-106807
Two-dimensional monolayer copper selenide(Cu Se) has been epitaxially grown and predicted to host the Dirac nodal line fermion(DNLF). However, the metallic state of monolayer Cu Se inhibits the potential application of nanoelectronic devices in which a band gap is needed to realize on/off properties. Here, we engineer the band structure of monolayer Cu Se which is an analogue of a p-doped system via external atomic modification in an effort to realize the semiconducting state.We find that the H and Li modified monolayer Cu Se shifts the energy band and opens an energy gap around the Fermi level.Interestingly, both the atomic and electronic structures of monolayer Cu HSe and Cu Li Se are very different. The H atoms bind on top of Se atoms of monolayer Cu Se with Se–H polar covalent bonds, annihilating the DNLF band of monolayer Cu Se dominated by Se orbitals. In contrast, Li atoms prefer to adsorb at the hexagonal center of Cu Se, preserving the DNLF band of monolayer Cu Se dominated by Se orbitals, but opening band gaps due to a slight buckling of the Cu Se layer. The realization of metal-to-semiconductor transition from monolayer Cu Se to Cu X Se(X = H, Li) as revealed by first-principles calculations makes it possible to use Cu Se in future electronic devices.  相似文献   

5.
We design a double quantum-dot (QD) shuttle (DQDS) model including two rigidly connected QDs that are softly linked to two leads via deformable organic materiaJs. Based on the full quantum mechanical approaches we explore the influences on the electron transport induced by the electrical and mechanical degrees of freedom. First of a/l the modified rate equations of the DQDS are derived theoretically and then a numerical investigation on the quantum transport through the DQDS is performed. For the classical DQDS, the time-dependent evolutions of the electron- occupation probabilities and the currents flowing through the DQDS show the periodic oscillations with their periods determined by the oscillation period of the DQDS. Both the mechanical oscillation amplitude and the interdot coupling can play crucial roles in adjusting the peak shapes of the currents and the probabilities. For the quantum DQDS, the current and electron-occupation probabilities of the DQDS evolve into a stationary state as time goes on, with no periodical oscillations observed. As a consequence, the sharp differences of the time-dependent properties between the c/assica/ and quantum DQDS systems are clearly demonstrated, which should be greatly helpful in designing new nanoelectromechanical devices. Also, this work is of great significance to understanding the kind of rigidly connected QD shuttle systems that have more than two QDs.  相似文献   

6.
We investigate the instability of threshold voltage in D-mode MIS-HEMT with in-situ SiN as gate dielectric under different negative gate stresses.The complex non-monotonic evolution of threshold voltage under the negative stress and during the recovery process is induced by the combination effect of two mechanisms.The effect of trapping behavior of interface state at SiN/AlGaN interface and the effect of zener traps in AlGaN barrier layer on the threshold voltage instability are opposite to each other.The threshold voltage shifts negatively under the negative stress due to the detrapping of the electrons at SiN/AlGaN interface,and shifts positively due to zener trapping in AlGaN barrier layer.As the stress is removed,the threshold voltage shifts positively for the retrapping of interface states and negatively for the thermal detrapping in AlGaN.However,it is the trapping behavior in the AlGaN rather than the interface state that results in the change of transconductance in the D-mode MIS-HEMT.  相似文献   

7.
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron–hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron–hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.  相似文献   

8.
Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current–voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.  相似文献   

9.
We theoretically study the band structure and optical conductivity of twisted bilayer graphene(TBG) near the magic angle considering the effects of lattice relaxation. We show that the optical conductivity spectrum is characterized by a series of peaks associated with the van Hove singularities in the band structure, and the peak energies evolve systematically with the twist angle. Lattice relaxation effects in TBG modify its band structure, especially the flat bands, which leads to significant shifts of the peaks in the optical conductivity. These results demonstrate that spectroscopic features in the optical conductivity can serve as fingerprints for exploring the band structure, band gap, and lattice relaxation in magic-angle TBG as well as identifying its rotation angle.  相似文献   

10.
王义炎  郁巧鹤  夏天龙 《中国物理 B》2016,25(10):107503-107503
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles.Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials.In this paper,we report the synthesis of high quality single crystals of BaMnBi_2 and investigate the transport properties of the samples.BaMnBi_2 is a metal with an antiferromagnetic transition at T_N = 288 K.The temperature dependence of magnetization displays different behavior from CaMnBi_2 and SrMnBi_2,which suggests the possible different magnetic structure of BaMnBi_2.The Hall data reveals electron-type carriers and a mobility μ(5K)= 1500 cm~2/V·s.Angle-dependent magnetoresistance reveals the quasi-two-dimensional(2D) Fermi surface in BaMnBi_2- A crossover from semiclassical MR~H~2dependence in low field to MR~H dependence in high field,which is attributed to the quantum limit of Dirac fermions,has been observed in magnetoresistance.Our results indicate the existence of Dirac fermions in BaMnBi_2.  相似文献   

11.
Quantum magnetic oscillations of the density of states of a weakly doped graphene bilayer in the presence of a voltage on the gate have been studied. It has been shown that there are additional peaks in the spectrum of oscillations, when the chemical potential is located in the region of the inverted (owing to the voltage on the gate) part of the energy spectrum. Owing to the inverted band structure, quantum oscillations also exist in undoped graphene, when the chemical potential is inside the band gap. A clear physical interpretation of the results is given.  相似文献   

12.
A small quantum ring with less than ten electrons was studied by transport spectroscopy. For strong coupling to the leads a Kondo effect is observed and used to characterize the spin structure of the system in a wide range of magnetic fields. At small magnetic fields Aharonov-Bohm oscillations influenced by Coulomb interaction appear. They exhibit phase jumps by pi at the Coulomb-blockade resonances. Inside Coulomb-blockade valleys the Aharonov-Bohm oscillations can also be studied due to the finite conductance caused by the Kondo effect. Astonishingly, the maxima of the oscillations show linear shifts with increasing magnetic field and gate voltage.  相似文献   

13.
Using the π orbital tight-binding model and the multi-channel Laudauer-Büttiker formula, the combined effect of Aharonov-Bohm effect (induced by an axial magnetic field) and uniaxial strain on quantum conductance oscillations of the electronic Fabry-Perot resonators composed of armchair and metallic zigzag single-walled carbon nanotubes (SWNTs) has been studied. It is found that, for the case of the armchair SWNT, conductance oscillations near the band gap are dominated by Aharonov-Bohm effect, while the conductance oscillations in other regions are dominated by the uniaxial strains. The combined effect of Aharonov-Bohm effect and uniaxial strains on quantum conductance oscillations is not obvious. But, for the case of the metallic zigzag SWNTs, obvious single-channel transport and one or two conductance oscillations existing in two different gate voltage ranges were found by the combined effect of uniaxial strain and axial magnetic field.  相似文献   

14.
Combined quantum wire and quantum dot system is theoretically predicted to show unique conductance properties associated with Coulomb interactions. We use a split gate technique to fabricate a quantum wire containing a quantum dot with two tunable potential barriers in a two-dimensional electron gas. We observe the effects of the quantum dot cavity on the electron transport through the quantum wire, such as Coulomb oscillations near the pinch-off voltage and periodic conductance oscillations on the first conductance plateau.  相似文献   

15.
Zhou C  Kong J  Dai H 《Physical review letters》2000,84(24):5604-5607
Individual single-walled carbon nanotubes (SWNT) exhibiting small band gaps on the order of 10 meV are observed for the first time in electron transport measurements. Transport through the valence or conduction band of a small-gap semiconducting SWNT (SGS-SWNT) can be tuned by a nearby gate voltage. Intrinsic electrical properties of the Ohmically contacted SGS-SWNT are elucidated. An SGS-SWNT exhibits metal- or semiconductorlike characteristics depending on the Fermi level position in the band structure.  相似文献   

16.
Various mechanisms causing band gap narrowing in strongly heated silicon are considered. In the high-temperature region, it becomes necessary to use Fermi–Dirac quantum statistics to describe carriers, since the silicon chemical potential appears in the valence band and in the conduction band at high carrier concentrations. It is shown that carrier degeneracy under conditions of sufficiently strong heating of intrinsic semiconductor causes strong band gap narrowing. The obtained values of band gap narrowing are compared to experimental results.  相似文献   

17.
We study spin dependent transport through a magnetic bilayer graphene nanojunction configured as a two-dimensional normal/ferromagnetic/normal structure where the gate voltage is applied on the layers of ferromagnetic graphene. Based on the four-band Hamiltonian, conductance is calculated by using the Landauer-Buttiker formula at zero temperature. For a parallel configuration of the ferromagnetic layers of bilayer graphene, the energy band structure is metallic and spin polarization reaches its maximum value close to the resonant states, while for an antiparallel configuration the nanojunction behaves as a semiconductor and there is no spin filtering. As a result, a huge magnetoresistance is achievable by altering the configurations of ferromagnetic graphene around the band gap.  相似文献   

18.
We investigate the physical properties of massive Dirac fermions in SrMnSb2 using transport, specific heat, electronic structure calculations, and Shubnikov-de Haas (SdH) oscillations. SrMnSb2 is a candidate Dirac antiferromagnet, consisting of the MnSb layers and the distorted square net of Sb atoms with a zigzag chain structure. This structural distortion leads to gap opening at the band crossing point found in the square lattice of the sister compound SrMnBi2 but leaves another Dirac band crossing near the Brillouin zone boundary. The small 2D Fermi surface with a light electron mass and a small Fermi energy is confirmed by the large resistivity anisotropy, the large Seebeck coefficient, and also the angle and temperature dependent SdH oscillations. The Berry phase obtained from the SdH oscillations is trivial, in contrast to the case of SrMnBi2. The relatively large spin orbit coupling gap and the small Fermi energy in SrMnSb2 is found to be essential to understand this contrasting behavior of the massive Dirac fermions as compared to SrMnBi2. Our observations demonstrate that the Berry phase of the mobile electrons in SrMnSb2 is sensitive to the Fermi level change and can be tuned by doping or deficiency.  相似文献   

19.
Exposing the (111) surface of the topological insulator Bi(2)Se(3) to carbon monoxide results in strong shifts of the features observed in angle-resolved photoemission. The behavior is very similar to an often reported "aging" effect of the surface, and it is concluded that this aging is most likely due to the adsorption of rest gas molecules. The spectral changes are also similar to those recently reported in connection with the adsorption of the magnetic adatom Fe. All spectral changes can be explained by a simultaneous confinement of the conduction band and valence band states. This is possible only because of the unusual bulk electronic structure of Bi(2)Se(3). The valence band quantization leads to spectral features which resemble those of a band gap opening at the Dirac point.  相似文献   

20.
The density-dependent mobility of n-type HgTe quantum wells with inverted band ordering has been studied both experimentally and theoretically. While semiconductor heterostructures with a parabolic dispersion exhibit an increase in mobility with carrier density, high-quality HgTe quantum wells exhibit a distinct mobility maximum. We show that this mobility anomaly is due to backscattering of Dirac fermions from random fluctuations of the band gap (Dirac mass). Our findings open new avenues for the study of Dirac fermion transport with finite and random mass, which so far has been hard to access.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号