首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
齐维靖  张萌  潘拴  王小兰  张建立  江风益 《物理学报》2016,65(7):77801-077801
采用有机金属化学气相沉积技术在Si(111)衬底上生长蓝光多量子阱发光二极管(LED) 结构, 通过在量子阱下方分别插入两组不同厚度的InGaN/GaN超晶格, 比较了超晶格厚度对LED光电性能的影响. 结果显示: 随超晶格厚度增加, 样品的反向漏电流加剧; 300 K下电致发光仪测得随着电流增加, LED发光光谱峰值的蓝移量随超晶格厚度增加而减少, 但不同超晶格厚度的两个样品在300 K下的电致发光强度几乎无差异. 结合高分辨X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的位错密度和V形坑特征分析, 明确了两样品反向漏电流产生巨大差异的原因是由于超晶格厚度大的样品具有更大的V形坑和V形坑密度, 而V形坑可作为载流子的优先通道, 使超晶格更厚的样品反向漏电流加剧. 通过对样品非对称(105)面附近的X射线衍射倒易空间图分析, 算得超晶格厚度大的样品其InGaN量子阱在GaN上的弛豫度也大, 即超晶格厚度增加有利于减小InGaN量子阱所受的应力. 综合以上影响LED发光效率的消长因素, 导致两样品最终的发光强度相近.  相似文献   

2.
Blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) are simulated by the APSYS software with a non-local quantum well transport model which is used to describe the phenomenon that carriers can fly over the quantum wells directly. The simulation results based on this model are in good agreement with the experiment and show its significant influence on the output power, carrier transport, peak wavelength and current crowding effect of the InGaN/GaN MQW LEDs, indicating that the non-local quantum well transport plays an important role in these devices.  相似文献   

3.
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.  相似文献   

4.
周梅  赵德刚 《物理学报》2016,65(7):77802-077802
采用LASTIP软件研究了InGaN/GaN(In组分为15%)量子阱垒层和阱层厚度对GaN基蓝紫光激光器性能的影响及机理. 模拟计算结果表明, 当阱层太薄或太厚时, GaN基激光器的阈值电流增加、输出功率下降, 最优的阱层厚度为4.0 nm左右; 当阱层厚度太薄时, 载流子很容易泄漏, 而当阱层厚度太厚时, 极化效应导致发光效率降低, 研究还发现, 与垒层厚度为7 nm 相比, 垒层厚度为15 nm时激光器的阈值电流更低、输出功率更高, 因此适当地增加垒层厚度能显著抑制载流子泄漏, 从而改善激光器性能.  相似文献   

5.
The influences of InGaN/GaN multiple quantum well (MQW) heterostructures with InGaN/GaN and GaN barriers on carrier confinement were investigated. The degree of disordering over a broad range of temperatures from 20 to 300 K was considered. The optical and electrical properties were strongly influenced by structural and compositional disordering of the InGaN/GaN MQW heterostructures. To compare the degree of disordering we examined the temperature dependence of the luminescence spectra and electrical conductance contingent on the Berthelot-type mechanisms in the InGaN/GaN MQW heterostructures. We further considered carrier transport in the InGaN/GaN disordered systems, probability of carrier tunneling, and activation energy of the transport mechanism for devices with InGaN/GaN and GaN barriers. The optical properties of InGaN/GaN disordered heterosystems can be interpreted from the features of the absorption spectra. The anomalous temperature-dependent characteristics of the disordered InGaN/GaN MQW structures were attributable to the enhancement of the exciton confinement.  相似文献   

6.
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.  相似文献   

7.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

8.
A blue emission originated from In GaN/GaN superlattice(SL) interlayer is observed in the yellow LEDs with V-pits embedded in the quantum wells(QWs), revealing that sufficient holes have penetrated through the QWs into SLs far away from the p-type layer. In the V-pits embedded LEDs, hole transport has two paths: via the flat c-plane region or via the sidewalls of V-pits. It is proved that the holes in SLs are injected from the sidewalls of V-pits, and the transportation process is significantly affected by working temperature, current density, and the size of V-pits. Four motion possibilities are discussed when the holes flow via the sidewalls. All these may contribute to a better understanding of hole transport and device design.  相似文献   

9.
Light emitting diodes (LEDs) based on GaN/InGaN material suffer from efficiency droop at high current injection levels. We propose multiple quantum well (MQW) GaN/InGaN LEDs by optimizing the barrier thickness and high–low–high indium composition to reduce the efficiency droop. The simulation results reflect a significant improvement in the efficiency droop by using barrier width of 10 nm and high–low–high indium composition in MQW LED.  相似文献   

10.
The effects of growth parameters such as barrier growth time, growth pressure and indium flow rate on the properties of InGaN/GaN multiple quantum wells (MQWs) were investigated by using photoluminescence (PL), high resolution X-ray diffraction (HRXRD), and atomic force microscope (AFM). The InGaN/GaN MQW structures were grown on c-plane sapphire substrate by using metalorganic chemical vapor deposition. With increasing barrier growth time, the PL peak energy is blue-shifted by 18 nm. For InGaN/GaN MQW structures grown at different growth pressures, the PL intensity is maximized in the 300 Torr – grown structure, which could be attributed to the improved structural quality confirmed by HRXRD and AFM results. Also, the optical properties of InGaN/GaN MQW are strongly affected by the indium flow rate.  相似文献   

11.
InGaN/GaN multiple-quantum-well (MQW) structure with Si-doped InGaN electron-emitting layer (EEL) was grown by metal–organic chemical vapor deposition and their characteristics were evaluated by photoluminescence (PL) measurements. In a typical structure, a low indium composition and wide potential well was used to be an EEL, and a six-fold MQW was used to be an active layer where the injected carriers recombine. By comparing the PL spectral characteristics of the MQW samples, the PL intensity of MQW with EEL is about 10 times higher than that of typical MQW. Experimental results indicate that the high electron capture rate of the MQW active region can be achieved by employing EEL.  相似文献   

12.
研究了具有InGaN/GaN超晶格(SL)插入结构的绿光InGaN/GaN多量子阱(MQW)的发光特性。结构测试表明,SL插入结构并没有引起MQW中平均In组份的增加,而是改变了In组份的分布,形成了高In组份的量子点和低In组份量子阱。其电致发光(EL)谱和光致发光(PL)谱均出现了双发光峰。我们认为这两个 峰分别来自于量子点和量子阱,且存在着载流子从阱向点转移的输运机制。最后变温PL积分强度的Arrhenius 拟合表明,SL插入结构并没有在MQW中引入新的缺陷,使其发光效率下降。  相似文献   

13.
The physical mechanisms leading to the efficiency droop of InGaN/GaN light-emitting diodes (LEDs) are theoretically investigated. We first discuss the effect of Auger recombination loss on efficiency droop by taking different Auger coefficients into account. It is found that the Auger recombination process plays a significant nonradiative part for carriers at typical LED operation currents when the Auger coefficient is on the order of 10−30 cm6 s−1. Furthermore, the InGaN/GaN multiple-quantum-well (MQW) LEDs with varied indium compositions in InGaN quantum wells are studied to analyze the wavelength-dependent efficiency droop. The simulation results show that the wavelength-dependent efficiency droop is caused by several different effects including non-uniform carrier distribution, electron overflow, built-in electrostatic field induced by spontaneous and piezoelectric polarization, and Auger recombination loss. These internal physical mechanisms are the critical factors resulting in the wavelength-dependent efficiency droop in InGaN/GaN MQW LEDs.  相似文献   

14.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

15.
The built-in piezoelectric field induced by compressive stress in InGaN/GaN multi-quantum well (MQW) light-emitting diodes (LEDs) was investigated using the electric field dependent electroreflectance (ER) spectroscopic method. InGaN/GaN MQW structures were prepared on sapphire substrates of different thicknesses. Thinning the sapphire substrate enables control of the compressive stress by changing the curvature of the wafer bowing. The wafer bowing-induced mechanical stress alters the piezoelectric field in the InGaN/GaN MQW. The flat band voltage, estimated by measuring the applied reverse bias voltage that induces a 180° phase shift in the ER spectra, was decreased from −11.21 V to −10.51 V by thinning the sapphire substrate thickness from 200 to 60 μm. To calculate the piezoelectric field (Fpz) from the compensation voltage, the depletion width was obtained from the capacitance–voltage measurement. The Fpz estimated from the energy shift in ER peak in a bias range from 0 to −12 V was changed by 110 kV/cm.  相似文献   

16.
We have measured and analyzed, at different temperatures and bias voltages, the dark noise spectra of GaAs/AlGaAs heterojunction infrared photodetectors, where a highly doped GaAs emitter is sandwiched between two AlGaAs barriers. The noise and gain mechanisms associated with the carrier transport are investigated, and it is shown that a lower noise spectral density is observed for a device with a flat barrier, and thicker emitter. Despite the lower noise power spectral density of flat barrier device, comparison of the dark and photocurrent noise gain between flat and graded barrier samples confirmed that the escape probability of carriers (or detectivity) is enhanced by grading the barrier. The grading suppresses recombination owing to the higher momentum of carriers in the barrier. Optimizing the emitter thickness of the graded barrier to enhance the absorption efficiency, and increase the escape probability and lower the dark current, enhances the specific detectivity of devices.  相似文献   

17.
InGaN layers capped with GaN were annealed at 550℃ for 1 hour. During annealing, cracks appeared and dissolved In GaN penetrated through the microcracks into the V-pits to form indium-rich nanoprecipitates. Some precipitates, in-situ annealed under nitrogen ion irradiation by MBE, were confirmed to be cubic GaN on the tops of precipitates, formed by nitriding the pre-existing Ga droplets under nitrogen ions irradiation.  相似文献   

18.
The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.  相似文献   

19.
王党会  许天旱  王荣  雒设计  姚婷珍 《物理学报》2015,64(5):50701-050701
本文对InGaN/GaN多量子阱结构发光二极管开启后的电流噪声进行了测试, 结合低频电流噪声的特点和载流子之间的复合机理, 研究了低频电流噪声功率谱密度与发光二极管发光转变机理之间的关系. 结论表明, 当电流从0.1 mA到10 mA逐渐增大的过程中, InGaN/GaN发光二极管的电流噪声行为从产生-复合噪声逐渐接近于低频1/f噪声, 载流子的复合机理从非辐射复合过渡为电子与空穴之间载流子数的辐射复合, 并具有标准1/f噪声的趋势, 此时多量子阱中的电子和空穴之间的复合趋向于稳定. 本文的结论提供了一种表征InGaN/GaN多量子阱发光二极管发光机理转变的有效方法, 为进一步研究发光二极管中载流子的复合机理、优化和设计发光二极管、提高其发光量子效率提供理论依据.  相似文献   

20.
The structural and optical properties of InGaN/GaN multiple quantum wells(MQWs) with different barrier thicknesses are studied by means of high resolution X-ray diffraction(HRXRD), a cross-sectional transmission electron microscope(TEM), and temperature-dependent photoluminescence(PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodicity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization potentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence,and the corresponding activation energy(or the localization potential) increases with the increase of the barrier thickness.The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers,i.e., clusters with lower In contents aggregate into clusters with higher In contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号