首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。  相似文献   

2.
The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy. © 2021 Authors. All rights reserved.  相似文献   

3.
Defective polymeric coatings that are particularly relevant in the conservation of outdoor metalwork, are analyzed using electrochemical impedance spectroscopy (EIS), validated by Kramers? Kronig transformations, and modeled using electrical equivalent circuit models (EECs). Using twenty different coated panels of five different coating types, ten mathematical methods for categorizing the protective qualities of coatings are explored as simpler and faster alternatives to circuit modeling; three methods gave a perfect correlation with the category determined by circuit modeling. Our findings highlight the need for fitting data to EECs before relying upon purely mathematical parameters for evaluating protective coating quality.  相似文献   

4.
Active corrosion protection based on self-healing of defects in coatings is a vital issue for development of new advanced corrosion protection systems. However, there is a significant lack of experimental protocols, which can be routinely used to reveal the self-healing ability and to study the active corrosion protection properties of organic and hybrid coatings.The present work demonstrates the possibility to use EIS (electrochemical impedance spectroscopy) for investigation of the self-healing properties of protective coatings applied on a metal surface. The model EIS experiments supported by SVET (scanning vibrating electrode technique) measurements show that an increase of low frequency impedance during immersion in the corrosive medium is related to the suppression of active corrosion processes and healing of the corroded areas. Thus, EIS can effectively be employed as a routine method to study the self-repair properties of different protective systems. The 2024 aluminium alloy coated with hybrid sol–gel film was used as a model system to study the healing of artificial defects by an organic inhibitor (8-hydroxyquinoline).  相似文献   

5.
The corrosion behavior of electrodeposited nanocrystalline (NC) zinc coatings with an average grain size of 43 nm was investigated in 3.5% NaCl solutions in comparison with conventional polycrystalline (PC) zinc coatings by using electrochemical measurement and surface analysis techniques. Both polarization curve and electrochemical impedance spectroscopy (EIS) results indicate that NC and PC coatings are in active state at the corrosion potentials, and NC coatings have much higher corrosion resistance than PC ones. The corrosion products on both coating surfaces are mainly composed of ZnO and Zn5(OH)8Cl2·H2O, but the corrosion products can form a relatively more protective layer on NC coating surfaces than on PC coatings. The EIS characteristics and corrosion processes of PC and NC zinc coatings during 330 h of immersion were discussed in detail.  相似文献   

6.
Sol?Cgel derived organic inorganic hybrid coatings are effective corrosion protective systems for metals. They offer an excellent adhesion to metal as well as to the subsequent coat via strong covalent bond and a three dimensional network of ?CSi?CO?CSi?C linkages which helps to retard the penetration of corrosive medium through the coating. Unlike conventional surface protection methodology, silane based pre-treatment is an environment friendly technology with number of advantages like room temperature synthesis, chemical inertness, high oxidation and abrasion resistance, excellent thermal stability, very low health hazard etc. Further, the hybrid silane provides required flexibility and an increased compatibility with the subsequent coating in multicoat systems. The performance properties of hybrid systems depend on number of parameters like type of silane (mono or bis), degree of hydrolysis, type and dosage of inhibitive/barrier pigments (in case of pigmented system), application techniques, curing temperature and curing schedule, need to be optimized. A guideline formulation for maximum corrosion resistance with low environmental impact consist of a superprimer (a bis-silane with conventional resins, chrome free inhibitive pigments and additives) followed by epoxy or polyurethane top coat as per the exposure conditions.  相似文献   

7.
In recent years, many hybrid inorganic‐organic systems have been proposed in order to replace the traditional conversion coatings on metals like aluminum, and some results have been promising. However, many proposed solutions are based on complicated processes which are not easy to be adapted to industrial scale. The aim of this study was to establish a simple process leading to the production of highly efficient corrosion protective hybrid sol‐gel coating systems for the aluminum alloys as replacement for the highly hazardous conventional chromate conversion coatings. Hybrid coatings have been realized by means of the sol‐gel process. CeO2 and ZnO have been introduced as dispersions of nanoparticles in the system and used as corrosion inhibitors. The aim of this work was to obtain pore‐free coatings with increased barrier properties using nanoparticles that possess the double function of pore fillers and corrosion inhibitors. The proposed processes led to coating materials with good adherence to the aluminum substrate and an extremely long life in the accelerated neutral salt spray test according to DIN ISO 9227. Electrochemical impedance spectroscopy approves these results by high impedance values in the low‐frequency region of the Bode plot. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The best way to reduce the degradation of metallic cultural heritage is through preventive conservation measures but, in many cases, it is not possible to obtain adequate environmental conditions, and it is necessary to apply coatings to the artefacts in order to protect them against corrosion. There is a continuous search in the metal conservation community for new and improved coatings that provide a better protection to the objects whilst respecting the special requirements of the conservation–restoration ethics. Whilst electrochemical techniques have a long tradition in conservation–restoration treatments for metallic cultural heritage, the evaluation of protective coatings using electrochemical impedance spectroscopy (EIS) has only been used very recently. EIS is a very well-established method to investigate metal coatings for general purposes and has many advantages that make it especially suitable for testing coatings for metallic works of art. This paper makes a review of the use of EIS for testing coatings for metallic cultural heritage from the first publications in the mid-1990s to the last papers. The experimental setup used, the types of coatings and metals investigated and the interpretation of the results are reviewed and compared with the use of EIS for testing general purpose anti-corrosive coatings.  相似文献   

9.
Under cyclic wet–dry conditions, the deterioration process of the organic coating on carbon steel surface has been studied using electrochemical impedance spectroscopy (EIS) assisted by self-organizing feature map (SOM) network. According to the EIS characteristics, changing rate of impedance and the classification results by SOM network, the entire deterioration process can be divided into three main stages shown as follows. Stage I is the medium penetration into coatings, which is a slow process. Stage II is the corrosion initiation under coatings, which is a relatively fast transition period. Stage III is the corrosion extension which causes coating delamination and makes the coatings lose its corrosion protection eventually. Besides, the results indicate that SOM network is a very simple and effective technique for analyzing the deterioration process of organic coating.  相似文献   

10.
Effect of surface water shear stress on the performance of an inhibitor film used in the carbon steel pipelines for oil and gas product transportation is studied. Experiments were conducted in laboratory by electrochemical impedance spectroscopy (EIS). EIS that was carried out under various rotation rates, different temperature, and immersion time was taken to investigate the behavior of a corrosion inhibitor and the destruction process. Typical EIS spectral changes were acquired during the film destruction processes, and this means that EIS is an effective method for evaluating inhibitor performance and monitoring the film layers’ behavior. Experimental results show that the film layers become more porous with increase in rotation rates and temperature. Therefore, the performance of this corrosion inhibitor decreased resulting from surface shear stress and bubble impact. In addition, scanning electron microscopy (SEM) was also taken to help confirm the inhibitor film structure under different conditions.  相似文献   

11.
6063铝合金三价铬化学转化膜的制备与电化学性能   总被引:2,自引:0,他引:2  
以硫酸铬钾及磷酸为原料在6063铝合金上制备了三价铬化学转化膜. 采用极化曲线及交流阻抗技术研究了不同条件下三价铬转化膜的电化学性能. 结果表明, 温度为30-40 ℃、沉积时间为9 min、pH值为2.0-3.0、KCr(SO4)2为15-25 g·L-1及H3PO4的浓度为10-20 g·L-1的条件为最优条件. Tafel极化曲线结果表明化学转化膜比基体铝合金具有更正的腐蚀电位(Ecorr)、小孔腐蚀电位(Epit)和更低的腐蚀电流(icorr), 说明化学转化膜具有良好的耐腐蚀性能. 利用交流阻抗谱的数据建立了等效电路模型, 并拟合出了腐蚀参数, 如表面电阻(Rcoat)及电容(Ccoat), 电荷转移电阻(Rct)及双电层电容(Cdl)等. 三价铬化学转化膜的交流阻抗谱结果与极化曲线的电化学测试结果相吻合.  相似文献   

12.
《印度化学会志》2021,98(12):100243
This study introduces varying concentrations of graphene oxide (GO) as a filler into zinc chromate in forming composite coatings to improve the corrosion protection of mild steel. The purity of synthesized GO was inferred through the application of complementary characterization techniques, including FT-IR, XRD, Raman, SEM-EDX, and TEM analyses. GO doped zinc chromate coatings were deposited on the surface of mild steel through the brushing method. Electrochemical studies, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) were conducted to elucidate the anticorrosion properties of the coated mild steel exposed to 0.5 ​M HCl solution. It was revealed that the highest anticorrosion protection was attained at low doping amount of 0.5% of GO with a corrosion rate of 0.036 mpy. Surface analyses revealed that incorporating GO into zinc chromate coating can effectively improve the anticorrosion properties and adhesion strength.  相似文献   

13.
A new cerium conversion coating modified with the hydrolysis silane is designed for AZ31 magnesium alloy, which aims at assessing the surface characterizations and electrochemical behaviors between the cerium conversion coating with and without the silane modified. The effect of the silane addictive is studied by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The adhesion of the coatings is undertaken according to the American Society for Testing and Materials (ASTM) standard D3359‐08 cross tape test. The electrochemical behavior is evacuated by polarization experiment and electrochemical impedance spectroscopy (EIS) in NaCl electrolyte. The results show that the addition of bis‐[triethoxysilylpropyl] tetrasulfide (BTESPT) to loosen and porous cerium conversion coating leads to the formation of a more compact and homogenous film, higher resistance to water uptake and better adhesion to substrate. Electrochemical measurements show that, compared with the non‐modified cerium conversion coating, the coating modified with the silane exhibits better anticorrosion properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate‐based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self‐healing ability are important aspects for replacement of chromate‐based pre‐treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane‐based hybrid films containing SiO2 nano‐particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dip‐coating technique. Two different types of coating were applied: a non‐inhibited film consisting of two layers (non‐inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 µm for the non‐inhibited system and 8 µm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non‐inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The Radiometric Emanation Method (REM) was used for the characterization of barrier properties of protective coatings. Radon diffusion parameters of the hardened protective layers prepared from ORMOCER lacquers of varying compositions were examined. The differences in the barrier properties of non weathered and weathered ORMOCER coatings, as well as of INCRALAC coatings, were compared. REM is recommended for the characterization of barrier properties of protective coatings submitted to weathering at varying conditions and time.  相似文献   

16.
Hexavalent chromium has been successfully employed for corrosion protection purposes in aerospace coatings for decades. However, legislation will restrict the use of Cr6+ in the future and therefore the aerospace sector needs to identify alternative environmentally friendly coatings for corrosion protection. Before implementation of newly developed systems into actual components is possible, rigorous and time-consuming testing practices are required to ensure the new systems can achieve the strict aerospace standards requirements. The emerging number of coating systems being developed, and the vast research conducted on the subject worldwide, make the selection of suitable replacements for industrial application challenging. In this work, differently pretreated aluminium AA2024 alloy surfaces are coated with conventional Cr6+ containing coating and compared with a number of industrial alternative coatings. Corrosion performance is assessed by real-time imaging while immersed, by electrochemical impedance spectroscopy (EIS), and by standardised salt-spray testing (SST). Results reveal that the performance ranking acquired by SST can be readily replaced by short-term immersion tests, and the time to failure in SST can be estimated from key corrosion indicators arising from EIS measurements at specific immersion times.  相似文献   

17.
Polyoxymethylene (POM, polyacetal) is one of the most popular plastics for machine elements, especially in Japan. However, it is difficult to use it under severe operating conditions such as high speed and high contact pressure. Diamond-like carbon (DLC) coatings were well known to be tribological and functional coatings. However, both POM and DLC coatings are difficult to adhere them each other. In the present paper, DLC coatings are deposited by plasma-based ion implantation and deposition (PBIID) method on POM substrate, and validity of DLC coatings on POM was investigated through friction and mechanical tests. When gas pressure was 0.2 and 0.8 Pa, hardness and adhesion properties of DLC coating deposited under gas pressure of 0.5 Pa were lower compared with under 0.2 and 0.8 Pa. For preparing DLC coatings having hard and good adhesion properties, relatively thin substrate was suitable. A correlation between relative humidity in the laboratory and friction coefficient was confirmed while DLC coatings remain on the substrate.  相似文献   

18.
Smart epoxy coatings modified with different additives were applied on AA2024. The following three different systems were studied: a reference consisting of an epoxy coating containing chromate active pigments and two “smart” coatings modified with containers loaded with corrosion inhibitor—layered double hydroxides filled with mercaptobenzothiazole and tubular halloysites (HS) filled with 8-hydroxyquinoline. The thickness of the coatings was determined by scanning electron microscopy. The barrier properties and the average corrosion resistance were assessed by electrochemical impedance spectroscopy (EIS). The long-term corrosion repair ability of the various coatings was confirmed by EIS measurements carried for a period of 3 weeks in scratched samples. The ability of the smart additives to inhibit corrosion over defects with different sizes and geometry was studied at the microscale by using localized impedance spectroscopy (LEIS) and the scanning vibrating electrode technique. The results demonstrate that the additives provide effective corrosion inhibition on defects of various sizes. Moreover, the LEIS measurements give some important highlights concerning the mechanisms and kinetics of inhibition of each system.  相似文献   

19.
土壤中钢铁表面防护层缺陷的电化学检测   总被引:12,自引:0,他引:12  
宋诗哲 《电化学》1999,5(2):162-165
基于电化学阻抗谱技术建立了实验室检测钢铁表面防护层破损与剥离的电化学方法。提出了在一定频率范围内以电极阻抗幅值比K的变化关系作为防护层缺陷状态的表征。用此方法测定了土壤中阴极保护的表面涂覆不同状态石油沥青防护层的A3钢模拟度片,得到了较为满意的结果。  相似文献   

20.
In this study, a protective Ni–Co alloy coating was prepared on sintered NdFeB magnet applying electrodeposition technique. A pure nickel coating was also studied for a comparison. The microstructure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. The corrosion protection properties of coatings for NdFeB magnet in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure and surface morphologies analysis showed that the addition of cobalt element into matrix metal Ni altered the preferential orientation of pure nickel coating from (2 0 0) crystal face for pure nickel coating to (1 1 1) crystal face for Ni–Co alloy coating, and made the surface morphologies more compact and uniform due to the grain-refining. The results of potentiodynamic polarization test showed that compared with pure nickel coating, Ni–Co alloy coating exhibited much nobler corrosion potential (E corr) and lower corrosion current density (j corr), indicating better anticorrosive properties. The long-term immersion test by dint of EIS indicated that the Ni–Co alloy coating still presented high impedance value of 1.9 × 105 Ω cm2 with the immersion time of 576 h indicating the excellent anticorrosive properties, and corrosion protection properties of nickel coating for NdFeB magnet practically disappeared with the immersion time of 144 h, which also indicated that the Ni–Co alloy coating provided better corrosion protection properties for the NdFeB magnet compared with nickel coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号