首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed.  相似文献   

2.
It is shown that orientational ordering of anisotropic organic molecules with permanent magnetic dipoles in a tilted film should result in a macroscopic magnetisation in the plane of the film. The important requirement here is that the molecules are strongly biaxial, and the corresponding biaxial orientational order parameter in the tilted phase is sufficiently large. The molecules should also be characterised by a reduced symmetry of the magnetic core compared with existing “single molecular magnets". Possible symmetry groups of the molecular magnetic core, which allow for the existence of nonzero average magnetic moment, are discussed in detail. The tilt-induced ferromagnetic ordering of such molecules may be determined by nonmagnetic intermolecular interactions including, for example, quadrupole-quadrupole electrostatic interaction or dispersion interaction between molecules of particular symmetry. Magnetic intermolecular interactions are not important here, and as a result the induced ferromagnetic state may be stable in any temperature range where the corresponding tilted film is stable. These general conclusions, which form a theoretical foundation for the existence of novel fluid low-dimensional magnetic materials, are based on symmetry arguments and are supported by a simple mean-field molecular model. We also discuss how such induced ferromagnetic ordering may be observed in Langmuir-Blodgett films which seem to be the best candidates for preparing these magnetic materials.  相似文献   

3.
张尧  张杨  董振超 《物理学报》2018,67(22):223301-223301
分子尺度上的光电相互作用研究可以为发展未来信息和能源技术提供科学基础.扫描隧道显微镜不仅可以用来观察和操纵纳米世界中的原子和分子,而且其高度局域化的隧穿电流还可以被用来激发隧道结中的分子,使之发光,以研究局域场下的分子光电特性.本文综述了中国科学技术大学单分子光电研究组近期在锌酞菁分子电致发光方面取得的科学进展,包括:1)利用有效的电子脱耦合与纳腔等离激元调控技术,实现了隧穿电子激发下的单个锌酞菁分子的电致荧光,并通过发展相关的光子发射统计测量方法,表征了单个分子在隧穿电子激发下的电致荧光具有单光子发射特性;2)发展了具有亚纳米空间分辨的荧光光谱成像技术,实现了对酞菁分子间相干偶极相互作用特征的实空间观察;3)对分子与纳腔等离激元之间的相干耦合作用进行了亚纳米精度的操控,在单分子水平上观察到了法诺共振和兰姆位移效应.这些研究结果不仅为研发基于有机分子的电泵纳米光源与单光子光源等分子光电器件提供了新的思路,而且为在单分子尺度上研究分子光电特性、分子间能量转移以及场与物质之间的相互作用规律等提供了新的表征方法.  相似文献   

4.
Co-B非晶态合金中电子转移问题的量子化学研究   总被引:5,自引:0,他引:5  
根据Co -B非晶态结构的短程有序、Co和B之间是较强的化学作用以及化学键理论 ,设计了ComB2 (m=1~ 4)原子簇模型 ,用DFT方法对其进行高水平的量子化学计算 ,结果表明 ,模型体系ComB2 (m =1~ 4)中 ,B原子供给Co原子电子 ,这与非晶态合金的实验结果一致 ,同时存在B -B直接相连 ,为了比较 ,也选择了ConB (n =1~ 4)模型 ,计算结果与实验不符 ,说明ComB2 (m =1~ 4)原子簇模型更能反映非晶态的结构特点 .  相似文献   

5.
Microcrystalline LiNiPO4 powders have been prepared by solid-state reaction using various precursors. Characterization of the structure and morphology of powders was performed using XRD, SEM, HRTEM, Raman, and FTIR. The electronic properties of materials were investigated by SQUID and ESR. The LiNiPO4 material adopts the olivine-like structure (Pnma S.G.). Analysis of the Raman and FTIR spectra figures out, with the aid of a molecular vibration model, the bonding between NiO6 octahedral and (PO4)3? tetrahedral groups. The electronic configuration and the local cationic arrangement are confirmed by magnetic susceptibility and electron spin resonance spectroscopy.  相似文献   

6.
Co掺杂ZnO薄膜的结构和磁学性能   总被引:1,自引:1,他引:0  
研究了用单束脉冲激光沉积法制备的Co掺杂ZnO薄膜的结构和磁学性能。XRD表征结果表明制备的薄膜是具有沿c轴择优取向的纤锌矿点阵结构。然而,进一步的高分辨电子显微镜结果显示整个样品上的晶体取向并不完全相同。很难说明形成了单晶。结果分析表明Co占据了部分Zn的格点,并对电子结构产生了影响。室温下观察到了磁滞回线,显示掺杂Co可以实现ZnO的磁性翻转,但磁性比较小。该薄膜与我们以前用双束脉冲激光沉积法制备的Co掺杂ZnO薄膜具有相似的性能,提示我们其内部的机制可能相似。  相似文献   

7.
8.
9.
Within the framework of the local density approximation (LDA) of the density functional theory (DFT) and the pseudopotential method, we have carried out ab initio calculations to investigate the structural and electronic properties of graphene upon the adsorption of benzene and naphthalene molecules. Our total-energy calculations suggest that, for both benzene and naphthalene adsorbed on graphene, the stack configuration is the most stable structure. The corresponding adsorption energies at different sites are estimated for both molecular adsorbates. The equilibrium parameters and the electronic band structure for the stable geometries have been calculated and compared with the available findings.  相似文献   

10.
We use substrates chemically micropatterned with anionic and cationic regions to govern the deposition of charged colloidal particles. The direct observation of the colloidal assembly suggests that this process includes two steps: an initial patterned attachment of colloids to the substrate and an additional ordering of the structure upon drying. The driving forces of the process, i.e. , screened electrostatic and lateral capillary interactions, are discussed. This approach makes it possible to fabricate complex, high-resolution two-dimensional arrays of colloidal particles.  相似文献   

11.
《中国物理 B》2021,30(9):98504-098504
Porphine has a great potential application in molecular electronic devices. In this work, based on the density functional theory(DFT) and combining with nonequilibrium Green's function(NEGF), we study the transport properties of the molecular devices constructed by the covalent homocoupling of porphine molecules conjunction with zigzag graphene nanoribbons electrodes. We find that different couple phases bring remarkable differences in the transport properties. Different coupling phases have different application prospects. We analyze and discuss the differences in transport properties through the molecular energy spectrum, electrostatic difference potential, local density of states(LDOS), and transmission pathway. The results are of great significance for the design of porphine molecular devices in the future.  相似文献   

12.
Using ab initio molecular dynamics simulations, the local atomic structure and electronic properties of supercooled liquid Si (l-Si) at different temperatures from 1700 to 1100 K were studied. Our calculated coordination numbers present no obvious change in the temperature range investigated. Our results indicate that the structure of supercooled l-Si may be well described as a combined local atomic configuration of white-tin and diamond type structures. Upon cooling from 1700 to 1100 K, the tetrahedral white-tin type ordering collapses gradually toward the tetrahedral diamond-type structure. No drastic change behavior is observed in our work.  相似文献   

13.
This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.  相似文献   

14.
The low relaxivity of paramagnetic coordination complexes limits their use as contrast agents in magnetic resonance imaging (MRI). To address this problem, we study the relationship between the molecular structure of these complexes and their relaxivity. While others have investigated the vibrational modes as molecular determinants of the electronic spin relaxation time, we focus on the analysis of the molecular electrostatic potential (MEP) of the paramagnetic coordination complex. Electrostatic forces dominate the interaction between the coordination complex and water. Hence, in addition to steric forces, the molecular electrostatic potential should be a determinant of the lifetime of the water-metal link (tm), the internuclear distance between the water hydrogens and the metal (R), and the number of water molecules attached to the metal in the inner and outer spheres of coordination. We compute the molecular electrostatic potential for a series of model metalloporphyrins because their physical and biologic properties are well known, and they are putative magnetic resonance imaging contrast agents with affinity to neoplastic tissue. Replacing the sulfonato groups in MnTPPS4 with carboxylate groups in the ortho position of the phenyl rings attached to the meso carbons results in an electrostatic focusing field that should reduce R and increase tm. Similar substitutions involving polar groups, including one modeled after a well-known picket-fence porphyrin, are not strong enough to generate a focusing field. Instead, these polar groups should modulate the water-metal interactions through steric interactions. Molecular dynamic simulations show a large outer sphere of coordination around the paramagnet that extends almost three times the distance of the inner sphere of coordination.  相似文献   

15.
Epitaxial graphene, grown by thermal decomposition of the SiC (0001) surface, is a promising material for future applications due to its unique and superlative electronic properties. However, the innate chemical passivity of graphene presents challenges for integration with other materials for device applications. Here, we present structural characterization of epitaxial graphene functionalized by the organic semiconductor perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). A combination of ultra-high vacuum scanning tunneling microscopy (STM) and high-resolution X-ray reflectivity (XRR) is used to extract lateral and vertical structures of 0, 1, and 2 monolayer (ML) PTCDA on epitaxial graphene. Both Fienup-based phase-retrieval algorithms and model-based least-squares analyses of the XRR data are used to extract an electron density profile that is interpreted in terms of a stacking sequence of molecular layers with specific interlayer spacings. Features in the STM and XRR analysis indicate long-range molecular ordering and weak π–π* interactions binding PTCDA molecules to the graphene surface. The high degree of both lateral and vertical ordering of the self-assembled film demonstrates PTCDA functionalization as a viable route for templating graphene for the growth and deposition of additional materials required for next-generation electronics and sensors.  相似文献   

16.
黄晓菁  游荣义 《物理学报》2009,58(2):1200-1204
过渡金属纳米结构表面吸附CO分子时会出现异常红外效应,这一现象可以用纳米结构表面吸附分子在外电场作用下产生局部凝聚从而相互作用能增加来解释.在前期研究的基础上,给出金属基底表面生长出的纳米颗粒为椭球状颗粒的理论计算结果.基于均匀外电场中金属纳米椭球颗粒按一定对称性排列的表面结构模型,用经典电磁学理论计算了纳米椭球颗粒表面附近的局域电场.在此基础上,将吸附的CO分子等效为偶极子,在考虑了偶极子与局域电场、偶极子之间以及偶极子与金属基底三种相互作用的情况下,用Monte-Carlo方法进行数值模拟,最后给出纳 关键词: 金属纳米结构表面 纳米椭球 吸附分子 局域电场  相似文献   

17.
Equilibrium molecular dynamics simulations have been performed for liquid water using three different potential models in the NVT and NPT ensembles. The flexible SPC model, the rigid TIP4P model and the rigid/polarizable TIP4P-FQ potential were studied. The Lekner method was used to handle long range electrostatic interactions, and an efficient trivariate cubic spline interpolation method was devised for this purpose. A partitioning of the electrostatic interactions into medium and long range parts was performed, and the concomitant use of multiple timestep techniques led to substantially enhanced computation speeds. The simulations were carried out using 256 molecules in the NVT ensemble at 25°C and 997 kg m?3 and in the NPT ensemble at 25°C and 1 bar. Various dynamic, structural, dielectric, rotational and thermodynamic properties were calculated, and it was found that the simulation methodologies performed satisfactorily vis-à-vis previous simulation results and experimental observations.  相似文献   

18.
An equilibrium molecular dynamics model is developed to investigate the interactions of triiodide cluster ion with solvents. The internal dynamics of the triiodide ion is described by a valence bond model which responds to the field of the classical solvent molecules. The solvent molecules were described by standard classical models with rigid molecules, fixed partial charges on atomic sites and site-site Lennard-Jones interactions. One finds the solvent effects on the I-3 are unusually strong as it is a very polarizable species. Protic solvents such as water, ethanol, and methanol that can form hydrogen bonds to lead to the I-3 geometry with two unequal bonds and an asymmetric distribution of charges. But for the solvents such as xenon, tetrahydrofuran, methyltetrahydrofuran, and acetonitrile, the I-3 only illustrates a geometry with two equal bonds. We find that structure changing is induced by local electrostatic attraction between solvent molecules.  相似文献   

19.
The optoelectronic properties of semiconductor quantum-dot (QD) solids depend on the electronic structure of the building blocks and their interactions. Disorder may affect the coupling on a local scale. We have measured the density of states of 2D arrays of PbSe QDs site by site using scanning tunneling spectroscopy. It markedly differs from that of isolated QDs due to electronic coupling in the array. We observe strong local variations in the coupling strength with two prototypical cases: delocalization of the conduction electrons only, and full coupling with both hole and electron delocalization over the QD sites in the array.  相似文献   

20.
Attractive bonding interactions between molecules typically have inherent conservation laws which influence the statistical properties of such systems in terms of corresponding sum rules. We have considered lattice water as an example, and we have enunciated the consequences of the sum rule through a general computational procedure called molecular mean field theory. Fluctuations about the mean field are computed and many of the liquid properties have been deduced and compared with Monte Carlo simulation, molecular dynamics, and experimental results. Large correlation lengths are seen to be a consequence of the sum rule in the liquid phase. Long-range Coulomb interactions are shown to have minor effects on our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号