首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-body Coulomb explosion processes of triply charged positive ions of methylacetylene (CH(3)-C≡C-H) and its isotopomer, methyl-d(3)-acetylene (CD(3)-C≡C-H), induced by an ultrashort intense laser field (790 nm, ~40 fs, 5.0 × 10(13) W cm(-2)) are investigated by the coincidence momentum imaging method. Two types of three-body decomposition processes accompanying the ejection of a proton are identified for methylacetylene, and six types of three-body decomposition processes accompanying the ejection of a proton or a deuteron are identified for methyl-d(3)-acetylene. From the observed momentum vectors of all the three fragment ions for each decomposition pathway, the proton and deuteron distributions are constructed in the coordinate space, and the hydrogen migration processes are investigated. It was shown that the hydrogen migration proceeds more efficiently from the methyl group than from the methine group. In addition to the decomposition pathways accompanying the migration of one H (or D) atom, the decomposition pathways accompanying the migration of two light atoms (H/D exchange and 2D migration) are identified. Furthermore, the decomposition pathways ascribable to the migration of three light atoms (H/D exchange followed by D migration) are identified, showing the high intramolecular mobilities of H and D atoms within methylacetylene and methyl-d(3)-acetylene in an intense laser field, resulting in the H/D scrambling.  相似文献   

2.
Two-body Coulomb explosion processes of ethane (CH(3)CH(3)) and its isotopomers (CD(3)CD(3) and CH(3)CD(3)) induced by an intense laser field (800 nm, 1.0 × 10(14) W/cm(2)) with three different pulse durations (40 fs, 80 fs, and 120 fs) are investigated by a coincidence momentum imaging method. On the basis of statistical treatment of the coincidence data, the contributions from false coincidence events are estimated and the relative yields of the decomposition pathways are determined with sufficiently small uncertainties. The branching ratios of the two body decomposition pathways of CH(3)CD(3) from which triatomic hydrogen molecular ions (H(3)(+), H(2)D(+), HD(2)(+), D(3)(+)) are ejected show that protons and deuterons within CH(3)CD(3) are scrambled almost statistically prior to the ejection of a triatomic hydrogen molecular ion. The branching ratios were estimated by statistical Rice-Ramsperger-Kassel-Marcus calculations by assuming a transition state with a hindered-rotation of a diatomic hydrogen moiety. The hydrogen scrambling dynamics followed by the two body decomposition processes are discussed also by using the anisotropies in the ejection directions of the fragment ions and the kinetic energy distribution of the two body decomposition pathways.  相似文献   

3.
We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ~1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ~3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that needs H∕D exchange.  相似文献   

4.
The crossed molecular beam reactions of ground state methylidyne, CH(X(2)Π), with D2-acetylene, C(2)D(2)(X(1)Σ(g)(+)), and of D1-methylidyne, CD(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), were conducted under single collision conditions at a collision energy of 17 kJ mol(-1). Four competing reaction channels were identified in each system following atomic 'hydrogen' (H/D) and molecular 'hydrogen' (H(2)/D(2)/HD) losses. The reaction dynamics were found to be indirect via complex formation and were initiated by two barrierless-addition pathways of methylidyne/D1-methylidyne to one and to both carbon atoms of the D2-acetylene/acetylene reactant yielding HCCDCD/DCCHCH and c-C(3)D(2)H/c-C(3)H(2)D collision complexes, respectively. The latter decomposed via atomic hydrogen/deuterium ejection to form the thermodynamically most stable cyclopropenylidene species (c-C(3)H(2), c-C(3)D(2), c-C(3)DH). On the other hand, the HCCDCD/DCCHCH adducts underwent hydrogen/deuterium shifts to form the propargyl radicals (HDCCCD, D(2)CCCH; HDCCCH, H(2)CCCD) followed by molecular 'hydrogen' losses within the rotational plane of the decomposing complex yielding l-C(3)H/l-C(3)D. Quantitatively, our crossed beam studies suggest a dominating atomic compared to molecular 'hydrogen' loss with fractions of 81 ± 23% vs. 19 ± 10% for the CD/C(2)H(2) and 87 ± 30% vs. 13 ± 4% for the CH/C(2)D(2) systems. The role of these reactions in the formation of interstellar isomers of C(3)H(2) and C(3)H is also discussed.  相似文献   

5.
Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of monoatomic ions H(+) and D(+), even at room temperature. The final H(+)/D(+) ratio is determined to a great extent by proton (and deuteron) exchange, which favours the enhancement of H(+) and the concomitant decrease of D(+).  相似文献   

6.
[Ru6(μ-O2CCH3)12(CH3OH)2(HCOO)2][Ru2(μ-O2CCH3)4(H2O)2](PF6)2.2H2O(Ru2(Ⅱ,Ⅲ)混合价)是通过二步反应合成的。首先Ru2(O2CCH3)4Cl在加热条件下与甲醇反应得到红棕色中间物,然后将该中间物在甲醇水(体积比7∶1)溶液中用Ag2SO4和NH4PF6进行脱氯配位反应得到此化合物。用元素分析、红外光谱、热重分析、循环伏安、X-衍射单晶结构分析等对其进行了表征。晶体结构表明,标题化合物的晶体属单斜晶系,空间群为P21/n,晶胞参数:a=0.85362(14)nm,b=1.19589(19)nm,c=3.6642(6)nm,β=92.316(3)°,Z=2,每个结构基元包含2个不同的配离子,其中[Ru2(μ-O2CCH3)4(H2O)2]+是1个双核钌配离子,[Ru6(μ-O2CCH3)12(CH3OH)2(HCOO)2]+是由另1个由甲醇配位、甲酸根桥连的六核钌配离子。2个独立的结构单元通过氢键形成三维超分子网络结构。采用循环伏安法对其电化学性质进行了表征,结果为一对准可逆的氧化还原峰,表明该配合物的中心金属二价钌原子Ru(Ⅱ)与三价钌原子Ru(Ⅲ)之间存在电子转移。  相似文献   

7.
The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context.  相似文献   

8.
Unimolecular dissociation of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) generates SiC(5)H(16)NO(+) and SiC(5)H(14)N(+). The formation of SiC(5)H(16)NO(+) involves dissociation of a Si[bond]O bond and formation of an O[bond]H bond through rearrangement. The fragmentation mechanism was investigated utilizing ab initio calculations and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry in combination with hydrogen/deuterium (H/D) exchange reactions. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) studies of the fully deuterated ion D(2)N(CH(2))(3)SiOSi(CH(2))(3)ND(3)(+) provided convincing evidence for a backbiting mechanism which involves hydrogen transfer from the terminal amine group to the oxygen to form a silanol-containing species. Theoretical calculations indicated decomposition of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) through a backbiting mechanism is the lowest energy decomposition channel, compared with other alternative routes. Two mechanisms were proposed for the fragmentation process which leads to the siloxane bond cleavage and the SORI-CID results of partially deuterated precursor ions suggest both mechanisms should be operative. Rearrangement to yield a silanol-containing product ion requires end groups possessing a labile hydrogen atom. Decomposition of disiloxane ions with end groups lacking labile hydrogen atoms yielded product ions from direct bond cleavages.  相似文献   

9.
A full-dimensional, ab initio based potential energy surface (PES) for CH(5)(+), which can describe dissociation is reported. The PES is a precise fit to 36173 coupled-cluster [CCSD(T)] calculations of electronic energies done using an aug-cc-pVTZ basis. The fit uses a polynomial basis that is invariant with respect to permutation of the five H atoms, and thus describes all 120 equivalent minima. The rms fitting error is 78.1 cm(-1) for the entire data set of energies up to 30,000 cm(-1) and a normal-mode analysis of CH(5)(+) also verifies the accuracy of the fit. Two saddle points have been located on the surface as well and compared with previous theoretical work. The PES dissociates correctly to the fragments CH(3)(+) + H(2) and the equilibrium geometry and normal-mode analyses of these fragments are also presented. Diffusion Monte Carlo calculations are done for the zero-point energies of CH(5)(+) (and some isotopologs) as well as for the separated fragments of CH(5)(+), CH(3)(+) + H(2) and those of CH(4)D(+), CH(3)(+) + HD and CH(2)D(+) + H(2). Values of D(0) are reported for these dissociations. A molecular dynamics calculation of CH(4)D(+) dissociation at one total energy is also performed to both validate the applicability of the PES for dynamics studies as well as to test a simple classical statistical prediction of the branching ratio of the dissociation products.  相似文献   

10.
In a preceding paper [Lee et al., J. Chem. Phys. 119, 827 (2003)], we measured the kinetic-energy distributions P(E(t)) and branching ratios of products from photolysis of propene at 157 nm using time-of-flight spectroscopy combined with photoionization. In the present work, hydrogen migration before fragmentation and a site effect on P(E(t)) and branching ratios were revealed from the photodissociation of CD(3)CHCH(2). Labeling of the methyl group with deuterium enabled us to differentiate between elimination of atomic and molecular hydrogen from the vinyl moiety and from the methyl moiety; the P(E(t)) and relative yields for the formation of H, D, H(2), HD, and D(2) were measured. Deuterium labeling allowed us to also differentiate the fragmentation after hydrogen transfer from that before hydrogen migration. The observation of isotopic variants of CD(3) and C(2)H(3) radicals in the C-C bond cleavage provides evidence for hydrogen transfer of propene because of site specificity. The fraction of fragmentation after hydrogen transfer is estimated to be 25%. The isotope-specific branching ratios for five dissociation pathways of CD(3)CHCH(2) were evaluated.  相似文献   

11.
A systematic ab initio study has been carried out to determine the MP2/6-31+G(d,p) structures and EOM-CCSD coupling constants across N-H-F-H-N hydrogen bonds for a series of complexes F(H(3)NH)(2)(+), F(HNNH(2))(2)(+), F(H(2)CNH(2))(2)(+), F(HCNH)(2)(+), and F(FCNH)(2)(+). These complexes have hydrogen bonds with two equivalent N-H donors to F(-). As the basicity of the nitrogen donor decreases, the N-H distance increases and the N-H-F-H-N arrangement changes from linear to bent. As these changes occur and the hydrogen bonds between the ion pairs acquire increased proton-shared character, (2h)J(F)(-)(N) increases in absolute value and (1h)J(H)(-)(F) changes sign. F(H(3)NH)(2)(+) complexes were also optimized as a function of the N-H distance. As this distance increases and the N-H...F hydrogen bonds change from ion-pair to proton-shared to traditional F-H...N hydrogen bonds, (2h)J(F)(-)(N) initially increases and then decreases in absolute value, (1)J(N)(-)(H) decreases in absolute value, and (1h)J(H)(-)(F) changes sign. The signs and magnitudes of these coupling constants computed for F(H(3)NH)(2)(+) at short N-H distances are in agreement with the experimental signs and magnitudes determined for the F(collidineH)(2)(+) complex in solution. However, even when the N-H and F-H distances are taken from the optimized structure of F(collidineH)(2)(+), (2h)J(F)(-)(N) and (1h)J(H)(-)(F) are still too large relative to experiment. When the distances extracted from the experimental NMR data are used, there is excellent agreement between computed and experimental coupling constants. This suggests that the N-H-F hydrogen bonds in the isolated gas-phase F(collidineH)(2)(+) complex have too much proton-shared character relative to those that exist in solution.  相似文献   

12.
Several mass spectrometry methods were explored to determine the regiospecificity of deuterium substitutions in hydrocarbon mixtures. The case investigated in this work was that of ethane mixtures obtained by catalytic HD exchange between either C(2)H(6) and D(2) or C(2)D(6) and H(2) over platinum surfaces. A total of ten isotopologs are possible, and were indeed detected in all cases. Deconvolution of low-resolution mass spectra was found sufficient to determine the composition of the gas mixtures in terms of the total number of deuterium substitutions, but not to identify symmetric versus asymmetric substitutions in the C(2)D(2)H(4), C(2)D(3)H(3), and C(2)D(4)H(2) products. High-resolution mass spectrometry allowed the separation of the intensities due to C(2)X(4)(+) fragments from those from molecular C(2)X(6)(+) signals (X = H or D), and with that for a more accurate determination of the composition of the mixtures. Relative probabilities were determined for the symmetric versus asymmetric removal of X(2) from C(2)X(6)(+) ions and for isotope scrambling in the mass spectrometer, and with that information fairly good cracking patterns were then calculated for the C(2)X(4)(+) fragments produced by each individual pure C(2)X(6) isotopologue. However, total deconvolution of all ten components in the ethane mixtures obtained by HD exchange catalysis was beyond the experimental accuracy of the measurements. Tandem mass spectrometry/collision-induced decomposition mass spectrometry (MS/CID-MS) proved more useful for this task. In particular, it was possible to determine the proportion of symmetric versus asymmetric double HD exchange in samples for which the total ethane-d(2) (in the case of C(2)H(6) + D(2)) or ethane-d(4) (with C(2)D(6) + H(2)) amounted to only approximately 3% on the ethane mix. A comparison with other analytical methods, NMR in particular, is provided.  相似文献   

13.
Dissociation of CH(4)(+) ions at 1000 eV induced by collision with Ar atoms was investigated by measuring the kinetic energies of the ionized fragments. At small scattering angles, including zero, H(+), H(2)(+), H(3)(+), CH(3)(+), CH(2)(+), CH(+), and C(+) fragments were observed. The attractive part of the potential in the CH(4)(+)-Ar collision system played an important role in the formation of the ionized fragments. Rainbow scattering, leading to a large scattering cross section, was shown to be responsible for the increased formation of H(3)(+). It is proposed that on collision-induced dissociation of CH(4)(+), its three hydrogen atoms, which form a triangle, simultaneously react and move together to form H(3)(+).  相似文献   

14.
A guided ion beam tandem mass spectrometer is used to examine the kinetic energy dependence of reactions of the third-row transition metal cation, Re(+), with molecular hydrogen and its isotopologues. A flow tube ion source produces Re(+) in its (7)S(3) electronic ground state. Reaction with H(2), D(2), and HD forms Re H(+)(Re D(+)) in endothermic processes. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energy of D(0)(Re(+)-H)=2.29+/-0.07 eV (221+/-6 kJ/mol). The experimental thermochemistry is consistent with ab initio calculations, performed here and in the literature. Theory also provides the electronic structures of these species and is used to examine the reactive potential energy surfaces. Results from reactions with HD provide insight into the reaction mechanisms and indicate that the late metal ion, Re(+), reacts largely via a statistical mechanism. This is consistent with the potential energy surfaces which locate a stable Re H(2) (+)((5)B(2)) complex. Results for this third-row transition metal system are compared with the first-row congener (Mn(+)) and found to have much higher reactivity towards dihydrogen and stronger M(+)-H bonds. These differences can be attributed to efficient coupling among surfaces of different spin along with lanthanide contraction and relativistic effects.  相似文献   

15.
The pyrolysis mechanisms of thiophene in asphaltenes have been investigated theoretically using density functional and ab initio quantum chemical techniques. All of the possible reaction pathways were explored using B3LYP, MP2, and CBS-QB3 models. A comparison of the calculated heats of reaction with the available experimental values indicates that the CBS-QB3 level of theory is quantitatively reliable for calculating the energetic reaction paths of the title reactions. The pyrolysis process is initiated via four different types of hydrogen migrations. According to the reaction barrier heights, the dominant 1,2-H shift mechanism involves two competitive product channels, namely, C(2)H(2) + CH(2)CS and CS + CH(3)CCH. The minor channels include the formation of CS + CH(2)CCH(2), H(2)S + C(4)H(2), HCS + CH(2)CCH, CS + CH(2)CHCH, H + C(4)H(3)S, and HS + C(4)H(3). The methyl substitution effect was investigated with the pyrolysis of 2-methylthiophene and 3-methylthiophene. The energetics of such systems were very similar to that for unsubstituted thiophene, suggesting that thiophene alkylation may not play a significant role in the pyrolysis of asphaltene compounds.  相似文献   

16.
A simple triacetylide complex of chromium(III) is synthesized for use as a potential precursor to metal-dicarbide clusters. Reaction of Me(3)SiCCLi with [(Me(3)tacn)Cr(CF(3)SO(3))(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) in THF generates [(Me(3)tacn)Cr(CCSiMe(3))(3)], which subsequently reacts with Bu(4)NF to supply [(Me(3)tacn)Cr(CCH)(3)] as an air-stable orange solid. The crystal structure of this unprecedented triacetylide complex reveals octahedral coordination of the chromium center, with linear Cr-C(triple bond)C bond angles and C(triple bond)C bond distances essentially identical to the corresponding distance in acetylene. Crystallization of the complex from a DMF solution containing K(CF(3)SO(3)) leads to the sandwich complex ([(Me(3)tacn)Cr(CCH)(3)](2)K)(+), in which the K(+) ion is coordinated in a side-on fashion by each of the six C(triple bond)C units. With the larger Cs(+) cation, a triangular ([(Me(3)tacn)Cr(CCH)(3)](3)Cs)(+) complex is instead observed. The magnetic properties of these alkali metal complexes are indicative of weak antiferromagnetic exchange between Cr(III) centers, with J = -0.8 and -0.3 cm(-1), respectively.  相似文献   

17.
We study how the degree of fluorine substitution for hydrogen atoms in ethene affects its reactivity in the gas phase. The reactions of a series of small fluorocarbon cations (CF(+), CF(2)(+), CF(3)(+), and C(2)F(4)(+)) with ethene (C(2)H(4)), monofluoroethene (C(2)H(3)F), 1,1-difluoroethene (CH(2)CF(2)), and trifluoroethene (C(2)HF(3)) have been studied in a selected ion flow tube. Rate coefficients and product cations with their branching ratios were determined at 298 K. Because the recombination energy of CF(2)(+) exceeds the ionization energy of all four substituted ethenes, the reactions of this ion produce predominantly the products of nondissociative charge transfer. With their lower recombination energies, charge transfer in the reactions of CF(+), CF(3)(+), and C(2)F(4)(+) is always endothermic, so products can only be produced by reactions in which bonds form and break within a complex. The trends observed in the results of the reactions of CF(+) and CF(3)(+) may partially be explained by the changing value of the dipole moment of the three fluoroethenes, where the cation preferentially attacks the more nucleophilic part of the molecule. Reactions of CF(3)(+) and C(2)F(4)(+) are significantly slower than those of CF(+) and CF(2)(+), with adducts being formed with the former cations. The reactions of C(2)F(4)(+) with the four neutral titled molecules are complex, giving a range of products. All can be characterized by a common first step in the mechanism in which a four-carbon chain intermediate is formed. Thereafter, arrow-pushing mechanisms as used by organic chemists can explain a number of the different products. Using the stationary electron convention, an upper limit for Δ(f)H°(298)(C(3)F(2)H(3)(+), with structure CF(2)═CH-CH(2)(+)) of 628 kJ mol(-1) and a lower limit for Δ(f)H°(298)(C(2)F(2)H(+), with structure CF(2)═CH(+)) of 845 kJ mol(-1) are determined.  相似文献   

18.
The gas-phase reactions between ethylenediamine (en) and Cu(+) have been investigated by means of mass spectrometry techniques. The MIKE spectrum reveals that the adduct ions [Cu(+)(H(2)NCH(2)CH(2)NH(2))] spontaneously decompose by loosing H(2), NH(3) and HCu, the loss of hydrogen being clearly dominant. The spectra of the fully C-deuterated species show the loss of HD, NH(3) and CuD but no losses of H(2), D(2), NH(2)D, NHD(2), ND(3) or CuH are observed. This clearly excludes hydrogen exchange between the methylene and the amino groups as possible mechanisms for the loss of ammonia. Conversely, methylene hydrogen atoms are clearly involved in the loss of molecular hydrogen. The structures and bonding characteristics of the Cu(+)(en) complexes as well as the different stationary points of the corresponding potential energy surface (PES) have been theoretically studied by DFT calculations carried out at B3LYP/6-311+G(2df,2p)//B3LYP/6-311G(d,p) level. Based on the topology of this PES the most plausible mechanisms for the aforementioned unimolecular fragmentations are proposed. Our theoretical estimates indicate that Cu(+) strongly binds to en, by forming a chelated structure in which Cu(+) is bridging between both amino groups. The binding energy is quite high (84 kcal mol(-1)), but also the products of the unimolecular decomposition of Cu(+)(en) complexes are strongly bound Cu(+)-complexes.  相似文献   

19.
通过三核铁盐[Fe3O(O2CCH3)6(H2O)3]C1在吡啶溶液中水解聚合得到铁氧簇合物[Fe11O6(OH)6(O2CCH3)15](C5H5N)6。晶体结构表明11个铁离子(Ⅲ)中6个位于扭曲的三棱柱的顶点上,其余5个分别位于三棱柱的每个面之外。铁离子(Ⅲ)之间以氧桥或者羟基氧桥相连。变温磁化率证实铁离子(Ⅲ)之间是反铁磁耦合的。  相似文献   

20.
We carried out an electron spin resonance (ESR) study on hydrogen ion radicals produced by radiolysis of solid para-H(2). In addition to quartet ESR lines proposed to be H(2) (+)-core H(6) (+) (D(2d)) ions in solid para-H(2) [T. Kumada et al., Phys. Chem. Chem. Phys. 7, 776 (2005)], we newly observed totally more than 50 resolved lines in gamma-ray irradiated solid para-H(2)-ortho-D(2) (1 mol %) and para-H(2)-HD (1 mol %) mixtures. We assigned these lines to be isotope substituents of H(2) (+)-core H(6) (+) ions such as H(5)D(+), H(4)D(2) (+), and H(2)D(4) (+) throughout the comparison of their ESR parameters with theoretical results. These results provide a conclusive evidence that H(2) (+)-core H(6) (+) ions are generated in irradiated solid hydrogens. Analysis of the EPR spectrum and ab initio calculations predicts D(2d) symmetry of the H(6) (+) ions, whereas a lowering symmetry (D(2d)-->C(2v)) induced by asymmetric nuclear wave function is observed in H(5)D(+) and H(4)D(2) (+). We also observed isotope-substitution reactions such as H(6) (+)+D(2)-->H(4)D(2) (+)+H(2) and H(6) (+)+HD-->H(5)D(+)+H(2), which are analogous to the well-known isotope-condensation reactions of H(3) (+) in dark nebula, H(3) (+)+HD-->HD(2) (+)+H(2) and HD(2) (+)+HD-->D(3) (+)+H(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号