首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new dipyridylamino-substituted s-triazine ligands DBB (N(2),N(2),N(4),N(4)-tetrabenzyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DDB (N(2),N(2),N(4),N(4)-tetrabutyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DCCl (6-chloro-N(2),N(2)-dicyclohexyl-N(4),N(4)-di(pyridin-2-yl)-1,3,5-triazine-2,4-diamine) and DDT (N(2),N(2),N(4),N(4)-tetraphenyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), have been incorporated into eight new, 0D Fe(II) compounds of type [Fe(II)(NCX)(2)(L)(2)]·Solvent (where NCX = NCS(-), NCSe(-) or N(CN)(2)(-)). The polymorphic compounds α-trans-[Fe(II)(NCS)(2)(DBB)(2)] (1) and β-trans-[Fe(II)(NCS)(2)(DBB)(2)] (2) display, respectively, a relatively abrupt, complete, one-step spin transition with T(?) ~ 170 K, and a more gradual, complete, one-step spin transition with T(?) ~ 300 K. Gradual, one-step spin transitions are observed for trans-[Fe(II)(N(CN)(2))(2)(DBB)(2)]·2CH(3)CH(2)OH (3) and trans-[Fe(II)(NCSe)(2)(DCCl)(2)]·2CH(3)OH (6) with T(?) ~ 280 K for both, while the one-step spin transition observed for a desolvated sample of trans-[Fe(II)(NCSe)(2)(DDB)(2)]·2CH(3)OH (4) is relatively abrupt, showing hysteresis with T(?↑) = 285 K and T(?↓) = 275 K. The compounds cis-[Fe(II)(NCS)(2)(DDB)(2)] (5) and trans-[Fe(II)(NCS)(2)(DDT)(2)]·4CH(2)Cl(2) (7) remain high spin, while structural data on trans-[Fe(II)(NCSe)(2)(DDT)(2)]·4CH(2)Cl(2) (8) suggests a spin transition at low temperatures. It is likely that distortion of the Fe(II)N(6) octahedron, intermolecular interactions and molecular conformation are crucial in deciding both the T(?) and abruptness of the spin transition for these species, although the nature of their influence varies. Variable temperature powder X-ray diffraction measurements on the polymorphs 1 and 2 reveal anisotropy in the unit cell parameters as the spin transition occurs.  相似文献   

2.
Reaction of FeCl(2)·4H(2)O with KNCSe and pyridine in ethanol leads to the formation of the discrete complex [Fe(NCSe)(2)(pyridine)(4)] (1) in which the Fe(II) cations are coordinated by two N-terminal-bonded selenocyanato anions and four pyridine co-ligands. Thermal treatment of compound 1 enforces the removal of half of the co-ligands leading to the formation of a ligand-deficient (lacking on neutral co-ligands) intermediate of composition [Fe(NCSe)(2)(pyridine)(2)](n) (2) to which we have found no access in the liquid phase. Compound 2 is obtained only as a microcrystalline powder, but it is isotypic to [Cd(NCSe)(2)(pyridine)(2)](n) and therefore, its structure was determined by Rietveld refinement. In its crystal structure the metal cations are coordinated by two pyridine ligands and four selenocyanato anions and are linked into chains by μ-1,3 bridging anionic ligands. Magnetic measurements on compound 1 show only paramagnetic behavior, whereas for compound 2 an unexpected magnetic behavior is found, which to the best of our knowledge was never observed before for a iron(II) homospin compound. In this compound metamagnetism and single-chain magnetic behavior coexist. The metamagnetic transition between the antiferromagnetically ordered phase and a field-induced ferromagnetic phase of the high-spin iron(II) spin carriers is observed at a transition field H(C) of 1300 Oe and the single-chain magnetic behavior is characterized by a blocking temperature T(B), estimated to be about 5 K.  相似文献   

3.
The iron mixed-valence complex (n-C(3)H(7))(4)N[Fe(II)Fe(III)(dto)(3)] exhibits a novel type of phase transition called charge-transfer phase transition (CTPT), where the thermally induced electron transfer between Fe(II) and Fe(III) occurs reversibly at ~120 K, in addition to the ferromagnetic phase transition at T(C) = 7 K. To investigate the mechanism of the CTPT, we have synthesized a series of magnetically diluted complexes (n-C(3)H(7))(4)N[Fe(II)(1-x)Zn(II)(x)Fe(III)(dto)(3)] (dto = C(2)O(2)S(2); x = 0-1), and carried out magnetic susceptibility and dielectric constant measurements and (57)Fe M?ssbauer spectroscopy. With increasing Zn(II) concentration (x), the CTPT is gradually suppressed and disappears at x ≈ 0.13. On the other hand, the ferromagnetic transition temperature (T(C)) is initially enhanced from 7 K to 12 K between x = 0.00 and 0.05, despite the nonmagnetic nature of Zn(II) ions, and then it decreases monotonically from 12 K to 3 K with increasing Zn(II) concentration. This anomalous dependence of T(C) on Zn(II) concentration is related to a change in the spin configuration of the ferromagnetic state caused by the partial suppression of the CTPT.  相似文献   

4.
The dinuclear iron(II) complex [(pypzH)(NCSe)Fe([micro sign]-pypz)(2)Fe(NCSe)(pypzH)].2H(2)O displays a single, sharp spin crossover transition between the [HS-HS] and [LS-LS] states and is structurally characterised above and below the T(1/2)= 225 K value  相似文献   

5.
Three bis-tetradentate acyclic amine ligands differing only in the arm length of the pyridine pendant arms attached to the 4,6-positions of the pyrimidine ring, namely, 4,6-bis[N,N-bis(2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Et)), 4,6-bis[N,N-bis(2'-pyridylmethyl)aminomethyl]-2-phenylpyrimidine (L(Me)), and 4,6-[(2'-pyridylmethyl)-2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Mix)) have been used to synthesize nine air-sensitive diiron(II) complexes: [Fe(II)(2)L(Et)(NCS)(4)]·MeOH·(3)/(4)H(2)O (1·MeOH·(3)/(4)H(2)O), [Fe(II)(2)L(Et)(NCSe)(4)]·H(2)O (2·H(2)O), [Fe(II)(2)L(Et)(NCBH(3))(4)]·(5)/(2)H(2)O (3·(5)/(2)H(2)O), [Fe(II)(2)L(Me)(NCS)(4)]·(1)/(2)H(2)O (4·(1)/(2)H(2)O), [Fe(II)(2)L(Me)(NCSe)(4)] (5), [Fe(II)(2)L(Me)(NCBH(3))(4)]·(3)/(2)H(2)O (6·(3)/(2)H(2)O), [Fe(II)(2)L(Mix)(NCS)(4)]·(1)/(2)H(2)O (7·(1)/(2)H(2)O), [Fe(II)(2)L(Mix)(NCSe)(4)]·(3)/(2)H(2)O (8·(3)/(2)H(2)O), and [Fe(II)(2)L(Mix)(NCBH(3))(4)]·(3)/(2)H(2)O (9·(3)/(2)H(2)O). Complexes 3·(5)/(2)H(2)O, 4·(1)/(2)H(2)O, 5, 6·(3)/(2)H(2)O, and 8·(3)/(2)H(2)O were structurally characterized by X-ray crystallography, revealing, in all cases, both of the iron(II) centers in an octahedral environment with two NCE (E = S, Se, or BH(3)) anions in a cis-position relative to one another. Variable temperature magnetic susceptibility measurements showed that all nine diiron(II) complexes are stabilized in the [HS-HS] state from 300 K to 4 K, and exhibit weak antiferromagnetic coupling. M?ssbauer spectroscopy confirmed the spin and oxidation states of eight of the nine complexes (the synthesis of air-sensitive complex 3 was not readily reproduced).  相似文献   

6.
In order to expand the few known examples of dinuclear iron(II) compounds displaying (weak) intradinuclear exchange coupling and spin-crossover on one or both of the iron(II) centres, various dinuclear compounds have been synthesised and assessed for their spin-crossover and exchange coupling behaviour. The key aim of the work was to prepare and structurally characterise 'weakly linked' and 'covalently bridged' systems incorporating bridging ligands such as alkyldinitriles (e.g.NC(CH(2))(4)CN), bipyrimidine (bpym), dicyanamide (dca(-)), tricyanomethanide (tcm(-)), 3,6-bis(2-pyridyl)tetrazine (bptz) and 3,6-bis(2-pyridyl)2,5-dihydrotetrazine (H(2)bptz). The 'end groups', which complete the Fe(ii)N(6) chromophores, include tris(2-pyridylmethyl)amine (tpa), di(2-pyridylethyl)(2-pyridylmethyl)amine (tpa'), 3-(2-pyridyl)pyrazole (pypzH), 1,10-phenanthroline (1,10-phen), tris(pyrazolyl)methane (tpm) and NCX(-)(X = S, Se). It was quite difficult to achieve the spin-crossover condition, many ligand combinations yielding high-spin/high-spin (HS-HS) Fe(II)Fe(II) spin states at all temperatures (300-2 K) with very weak antiferromagnetic coupling (J < -1 cm(-1)), two such being the crystallographically characterised [(dca)(tpm)Fe(mu(1,5)-dca)(2)Fe(tpm)(dca)], 5, and [(tpa')Fe(mu(1,5)-tcm)(2)Fe(tpa')](tcm)(2)(H(2)O)(2), 6. In contrast, a strong field was created around the Fe(II) centres in [(tpa)Fe(mu-(NC(CH(2))(4)CN))(2)Fe(tpa)](ClO(4))(4).NC(CH(2))(4)CN, 1, and the Fe-N bond distances, at 173 K, reflected this. This weakly-linked dinitrile example showed a spin-crossover beginning above 300 K. 'Half crossover' examples, yielding HS-LS states below the spin transition, similar to those noted by Real and coworkers in some mu-bpym systems, were noted for [(1,10-phen)(NCS)(2)Fe(mu-bpym)Fe(NCS)(2)(1,10-phen)], 2, [(pypzH)(NCSe)(2)Fe(mu-bpym)Fe(NCSe)(2)(pypzH)], 4, and [(tpa)Fe(mu-H(2)bptz)Fe(tpa)](ClO(4))(4), 8. Interestingly, the mu-bptz analogue, 7, remained LS-LS at all temperatures with the start of a broad spin crossover evident above 300 K. No thermal hysteresis was evident in the spin transitions of these new dinuclear crossover species indicating a lack of intra- or interdinuclear cooperativity.  相似文献   

7.
《Polyhedron》2007,26(9-11):1764-1772
Variable temperature magnetic susceptibility, Mössbauer spectroscopic and X-ray crystallographic studies are described on two structurally similar families of dinuclear iron(II) spin crossover (SCO) complexes of formula [Fe(NCX)(py)]2(μ-L)2, where L is either a 3,5-bis(2-pyridyl)-pyrazolate bridging ligand, bpypz, examples of which have been earlier reported by Kaizaki and coworkers, or a corresponding 3,5-bis(2-pyridyl)-1,2,4-triazolate, bpytz. Compounds synthesised were [Fe(NCS)(py)]2(μ-bpypz)2 (1), [Fe(NCSe)(py)]2(μ-bpypz)2 (2), [Fe(NCS)(py)]2(μ-bpytz)2 (3), [Fe(NCSe)(py)]2(μ-bpytz)2 (4), [Fe(NCBH3)(py)]2(μ-bpytz)2 (5). The crystal and molecular structures of 1 and 3 are very similar in their HS–HS forms (HS = high spin d6). In contrast to reported SCO behaviour for precipitated samples of 1, also repeated here, crystals of 1 show only HS–HS behaviour with no spin crossover transition. Complex 3 likewise displays HS–HS magnetism, with very weak antiferromagnetic coupling. Compound 5 displays a well resolved two-step, full spin transition from HS–HS to LS–LS states while compound 2 shows a one step transition. The Mössbauer data for 2 and 5 show unusual features at low temperatures.  相似文献   

8.
We report the synthesis and characterisation of the new polytopic ligands, ddta (N,N-di(pyridin-2-yl)-4,6-di(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)-1,3,5-triazin-2-amine) and tptd (N(2),N(2),N(4),N(4)-tetra(pyridin-2-yl)-6-(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)-1,3,5-triazine-2,4-diamine). Each contains N-donor dipyridylamino binding sites as well as separate and distinct mono-aza-15-crown-5 binding sites. The ligand ddta has been used to synthesise the polymeric heterometallic SCO compound trans-[Fe(II)(NCS)(2)(ddta)(2)Na(2)](ClO(4))(2)·4CH(3)CH(2)CH(2)OH, 1, and tptd has been used to synthesise the polymeric SCO compound trans-[Fe(II)(NCS)(2)(tptd)]·CH(3)OH, 2, and the dinuclear compound cis-[(Fe(II))(2)(NCS)(4)(tptd)(2)], 3. Magnetic susceptibility measurements show that 1 and a desolvated sample of 2 each undergo a gradual, one-step spin transition with T(?) values of ~240 K and ~110 K, respectively. The paucity of inter-chain intermolecular interactions, as well as the flexible, covalent bridges between Fe(II) spin crossover sites, are likely to contribute to the gradual nature of the spin transition observed in each case. Variable temperature powder X-ray diffraction studies on 1 show the anisotropic behaviour of the unit cell parameters, where c and the b-c plane are most affected by structural changes occurring as the temperature is lowered.  相似文献   

9.
Investigations on a series of eight novel mononuclear iron(III) Schiff base complexes with the general formula [Fe(L(5))(L(1))]·S (where H(2)L(5) = pentadentate Schiff-base ligand, L(1) = a pseudohalido ligand, and S is a solvent molecule) are reported. Several different aromatic 2-hydroxyaldehyde derivatives were used in combination with a non-symmetrical triamine 1,6-diamino-4-azahexane to synthesize the H(2)L(5) Schiff base ligands. The consecutive reaction with iron(III) chloride resulted in the preparation of the [Fe(L(5))Cl] precursor complexes which were left to react with a wide range of the L(1) pseudohalido ligands. The low-spin compounds were prepared using the cyanido ligand: [Fe(3m-salpet)(CN)]·CH(3)OH (1a), [Fe(3e-salpet)(CN)]·H(2)O (1b), while the high-spin compounds were obtained by the reaction of the pseudohalido (other than cyanido) ligands with the [Fe(L(5))Cl] complex arising from salicylaldehyde derivatives: [Fe(3Bu5Me-salpet)(NCS)] (2a), [Fe(3m-salpet)(NCO)]·CH(3)OH (2b) and [Fe(3m-salpet)(N(3))] (2c). The compounds exhibiting spin-crossover phenomena were prepared only when L(5) arose from 2-hydroxy-1-naphthaldehyde (H(2)L(5) = H(2)napet): [Fe(napet)(NCS)]·CH(3)CN (3a, T(1/2) = 151 K), [Fe(napet)(NCSe)]·CH(3)CN (3b, T(1/2) = 170 K), [Fe(napet)(NCO)] (3c, T(1/2) = 155 K) and [Fe(napet)(N(3))], which, moreover, exhibits thermal hysteresis (3d, T(1/2)↑ = 122 K, T(1/2)↓ = 117 K). These compounds are the first examples of octahedral iron(III) spin-crossover compounds with the coordinated pseudohalides. We report the structure and magnetic properties of these complexes. The magnetic data of all the compounds were analysed using the spin Hamiltonian formalism including the ZFS term and in the case of spin-crossover, the Ising-like model was also applied.  相似文献   

10.
The synthesis and detailed characterization of the new spin crossover mononuclear complex [Fe(II)(DAPP)(abpt)](ClO(4))(2), where DAPP = [bis(3-aminopropyl)(2-pyridylmethyl)amine] and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, are reported. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed the occurrence of an abrupt spin transition with a hysteresis loop. The hysteresis width derived from magnetic susceptibility measurements is 10 K, the transition being centered at T(c) downward arrow = 171 K for decreasing and T(c) upward arrow = 181 K for increasing temperatures. The crystal structure was resolved in the high-spin (293 and 183 K) and low-spin (123 K) states. Both spin-state structures belong to the monoclinic space group P2(1)/n (Z = 4). The thermal spin transition is accompanied by the shortening of the mean Fe-N distances by 0.177 A. The two main structural characteristics of [Fe(DAPP)(abpt)](ClO(4))(2) are a branched network of intermolecular links in the crystal lattice and the occurrence of two types of order-disorder transitions (in the DAPP ligand and in the perchlorate anions) accompanying the thermal spin change. These features are discussed relative to the magnetic properties of the complex. The electronic structure calculations show that the structural disorder in the DAPP ligand modulates the energy gap between the HS and LS states. In line with previous studies, the order-disorder phenomena and the spin transition in [Fe(DAPP)(abpt)](ClO(4))(2) are found to be interrelated.  相似文献   

11.
Reported herein are the synthesis, structural, magnetic and M?ssbauer spectroscopic characterisation of a dinuclear Fe(II) triple helicate complex [Fe(2)(L)(3)](ClO(4))(4).xH(2)O (x = 1-4), 1(H(2)O), where L is a bis-bidentate imidazolimine ligand. Low temperature structural analysis (150 K) and M?ssbauer spectroscopy (4.5 K) are consistent with one of the Fe(II) centres within the helicate being in the low spin (LS) state with the other being in the high-spin (HS) state resulting in a [LS:HS] species. However, M?ssbauer spectroscopy (295 K) and variable temperature magnetic susceptibility measurements (4.5-300 K) reveal that 1(H(2)O) undergoes a reversible single step spin crossover at one Fe(II) centre at higher temperatures resulting in a [HS:HS] species. Indeed, the T(1/2)(SCO) values at this Fe(II) centre also vary as the degree of hydration, x, within 1(H(2)O) changes from 1 to 4 and are centred between ca. 210 K-265 K, respectively. The dehydration/hydration cycle is reversible and the fully hydrated phase of 1(H(2)O) may be recovered on exposure to water vapour. This magnetic behaviour is in contrast to that observed in the related compound [Fe(2)(L)(3)](ClO(4))(4)·2MeCN, 1(MeCN), whereby fully reversible SCO was observed at each Fe(II) centre to give [LS:LS] species at low temperature and [HS:HS] species at higher temperatures. Reasons for this differing behaviour between 1(H(2)O) and 1(MeCN) are discussed.  相似文献   

12.
The first structural data for [Fe(phen)(2)(NCSe)(2)] (obtained using the extraction method of sample preparation) in its high-spin, low-spin and LIESST induced metastable high-spin states have been recorded using synchrotron radiation single crystal diffraction. The space group for all of the spin states was found to be Pbcn. On cooling from the high-spin state (HS-1) at 292 K through the spin crossover at about 235 K to the low-spin state at 100 K (LS-1) the iron coordination environment changed to a more regular octahedral geometry and the Fe-N bond lengths decreased by 0.216 and 0.196 A (Fe-N(phen)) and 0.147 A (Fe-N(CSe)). When the low-spin state was illuminated with visible light at about 26 K, the structure of this LIESST induced metastable high-spin state (HS-2) was very similar to that of HS-1 with regards to the Fe-phen bond lengths, but there were some differences in the bond lengths in the Fe-NCSe unit between HS-1 and HS-2. When HS-2 was warmed in the dark to 50 K, the resultant low-spin state (LS-2) had an essentially identical structure to LS-1. In all spin states, all of the shortest intermolecular contacts (in terms of van der Waals radii) involved the NCSe ligand, which may be important in describing the cooperativity in the solid state. The quality of the samples was confirmed by magnetic susceptibility and IR measurements.  相似文献   

13.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

14.
Reactions between the Os(VI)-nitrido salts (e.g., trans-[Os(VI)(tpy)(Cl)(2)(N)]PF(6) (tpy = 2,2':6',2"-terpyridine), cis-[Os(VI)(tpy)(Cl)(2)(N)]PF(6), and fac-[Os(VI)(tpm)(Cl)(2)(N)]PF(6) (tpm = tris(pyrazol-1-yl)methane)) and the hydroxylamines (e.g., H(2)NOH and MeHNOH) and the methoxylamines (e.g., H(2)NOMe and MeHNOMe) in dry MeOH at room temperature give three different types of products. They are Os(II)-dinitrogen (e.g., trans-, cis-, or fac-[Os(II)-N(2)]), Os(II)-nitrosyl [Os(II)-NO](+) (e.g., trans- or cis-[Os(II)-NO](+)), Os(IV)-hydroxyhydrazido (e.g., cis-[Os(IV)-N(H)N(Me)(OH)](+)), and Os(IV)-methoxyhydrazido (e.g., trans-/cis-[Os(IV)-N(H)N(H)(OMe)](+), and trans-/cis-[Os(IV)-N(H)N(Me)(OMe)](+)) adducts. The products depend in a subtle way on the electron content of the starting nitrido complexes, the nature of the hydroxylamines, the nature of the methoxylamines, and the reaction conditions. Their appearance can be rationalized by invoking the formation of a series of related Os(IV) adducts which are stable or decompose to give the final products by two different pathways. The first involves internal 2-electron transfer and extrusion of H(2)O, MeOH, or MeOMe to give [Os(II)-N(2)]. The second which gives [Os(II)-NO](+) appears to involve seven-coordinate Os(IV) intermediates based on the results of an (15)N-labeling study.  相似文献   

15.
The structure and spin-crossover magnetic behavior of [Fe(II)1(6)][BF(4)](2) (1 = isoxazole) and [Fe(II)1(6)][ClO(4)](2) have been studied. [Fe(II)1(6)][BF(4)](2) undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3, a = 17.4387(4) A, c = 7.6847(2) A] and at 130 K [space group P1, a = 17.0901(2) A, b = 16.7481(2) A, c = 7.5413(1) A, alpha = 90.5309(6) degrees, beta = 91.5231(6) degrees, gamma = 117.8195(8) degrees ] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 mu(B) is consistent with high-spin Fe(II). A plateau in mu(T) having a moment of 3.3 mu(B) centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe-N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [Fe(II)1(6)][ClO(4)](2) [space group P3, a = 17.5829(3) A, c = 7.8043(2) A, beta = 109.820 (3) degrees, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [Fe(II)1(6)][ClO(4)](2) slowly decomposes in solutions containing acetic anhydride to form [Fe(III)(3)O(OAc)(6)1(3)][ClO(4)] [space group I2, a = 10.1547(7) A, b = 16.5497(11) A, c = 10.3205(9) A, beta = 109.820 (3) degrees, T = 200 K]. The isosceles Fe(3) unit contains two Fe.Fe distances of 3.2844(1) A and a third Fe.Fe distance of 3.2857(1) A. The magnetic data can be fit to a trinuclear model with H = -2J(S(1)xS(2) + S(2)xS(3)) - 2J(13)(S(1)xS(3)), where J = -27.1 and J(13) = -32.5 cm(-1).  相似文献   

16.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

17.
The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according to their magnetic and [FeN6] structural characteristics. Compound 5, characterized for having two different iron(II) sites, displays a two-step spin transition with critical temperatures of Tc(1) = 155 K, Tc(2) downward arrow = 97 K, and Tc(2) upward arrow = 110 K. This change of spin state takes place in both sites simultaneously. All of these results are compared and discussed in the context of other {Fe(L) x [M(I)(CN)2]} coordination polymers, particularly those belonging to the homologous compounds {Fe(3-Xpy)2[Ag(CN)2]2} and their corresponding clathrate derivatives.  相似文献   

18.
The new ligand, tris(5-methylpyrazolyl)methane (1), has been prepared by the reaction of n-butyl lithium with tris(pyrazolyl)methane followed by trimethylation of the tetralithiated species with methyl iodide. The BF(4)(-), ClO(4)(-), and BPh(3)CN(-) salts of the Fe(II) complex of this ligand were also synthesized. The X-ray crystal structure of the BF(4)(-) complex (2) at 100 K had Fe-N bond lengths of 1.976 ?, indicative of a low spin Fe(II) complex, while at room temperature, the structure of this complex had a Fe-N bond distance close to 2.07 ?, indicative of an admixture of approximately 50% low-spin and 50% high-spin. The solid-state structure of the complex with a ClO(4)(-) counterion was determined at 5 different temperatures between 173 and 293 K, which allowed the thermodynamic parameters for the spin-crossover to be estimated. M?ssbauer spectra of the BF(4)(-) complex further support spin-state crossover in the solid state with a transition temperature near 300 K. UV-visible spectroscopy and (1)H NMR studies of 2 show that the transition temperature in solution is closer to 400 K. No spin-crossover was observed for [Fe(1)(2)](2+)·2BPh(3)CN(-). The results allow the separation of effects of groups in the 3-position from those in the 5-position on tpm ligands, and also point toward a small cooperative effect in the spin-crossover for the Fe(II) complex.  相似文献   

19.
[micro-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4')iron(II)] bis(hexafluorophosphate), [Fe(btzb)(3)](PF(6))(2), crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T(1/2) = 174 K and a hysteresis of about 4 K between T(1/2) and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, (57)Fe-M?ssbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P3 (No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)(3)](PF(6))(2): 300 K (HS), a = 11.258(6) A, c = 8.948(6) A, V = 982.2(10) A(3); 100 K (LS), a = 10.989(3) A, c = 8.702(2) A, V = 910.1(4) A(3). The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4' coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe-N bond lengths change between 1.993(1) A at 100 K in the LS state and 2.193(2) A at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.  相似文献   

20.
The paper reports the synthesis and detailed characterization of two new Fe(II) compounds: [Fe(pyim)(2)(bpen)](ClO(4))(2).2C(2)H(5)OH (2) and [Fe(pyim)(2)(bpe)](ClO(4))(2).C(2)H(5)OH (3) (pyim = 2-(2-pyridyl)imidazole, bpen = 1,2-bis(4-pyridyl)ethane, and bpe = 1,2-bis(4-pyridyl)ethene). Both compounds and the earlier synthesized [Fe(pyim)(2)(bpy)](ClO(4))(2).2C(2)H(5)OH (1) (bpy = 4,4'-bipyridine) form a family of one-dimensional spin crossover coordination polymers. Variable-temperature magnetic susceptibility measurements and M?ssbauer spectroscopy have revealed rather gradual spin transitions centered at 176 and 198 K for 2 and 3, respectively. The fitting of magnetic properties with the regular solution model leads to the enthalpy and entropy of spin transitions and the cooperativity parameter equal to DeltaH = 12.3 kJ mol(-1), DeltaS = 68.5 J mol(-1) K(-1), Gamma = 1.80 kJ mol(-1) for 2 and DeltaH = 13.6 kJ mol(-1), DeltaS = 68.1 J mol(-1) K(-1), Gamma = 2.05 kJ mol(-1) for 3. The crystal structures of 2 and 3, resolved by X-ray diffraction at 293 K, belong to the monoclinic space group C2/c (Z = 4). Both compounds display a one-dimensional infinite zigzag-chain structure. The polymer chains are stacked into two-dimensional sheets through intermolecular pi-interactions. The crystal packing of both compounds encloses two kinds of channels in which the counter ions and ethanol molecules are inserted. The DFT calculations of binuclear fragments extracted from three polymers resulted in the energy gaps between the LS and HS states being ordered as the observed transition temperatures. The influence of bridging ligands in the studied family of compounds was found in the modulation of the energy gap between the LS and HS states, leading to different transition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号