首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypeptide block copolymers with different block length ratios were obtained by sequential ring-opening polymerization of benzyl-L-glutamate and propargylglycine (PG) N-carboxyanhydrides. Glycosylation of the poly(PG) block was obtained by Huisgens cycloaddition "click" reaction using azide-functionalized galactose. All copolymers were self-assembled using the nanoprecipitation method to obtain spherical and wormlike micelles as well as polymersomes depending on the block length ratio and the nanoprecipitation conditions. These structures display bioactive galactose units in the polymersome shell, as proven by selective lectin binding experiments.  相似文献   

2.
pH and reduction dual-bioresponsive nanosized polymersomes based on poly(ethylene glycol)-SS-poly(2-(diethyl amino)ethyl methacrylate) (PEG-SS-PDEA) diblock copolymers were developed for efficient encapsulation and triggered intracellular release of proteins. PEG-SS-PDEA copolymers with PDEA-block molecular weights ranging from 4.7, 6.8, to 9.2 kg/mol were synthesized in a controlled manner via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(diethyl amino)ethyl methacrylate (DEAEMA) using PEG-SS-CPADN (CPADN = 4-cyanopentanoic acid dithionaphthalenoate; M(n) PEG = 1.9 kg/mol) as a macro-RAFT agent. These copolymers existed as unimers in water at mildly acidic pH (<7.2) conditions, but readily formed monodisperse nanosized polymersomes (54.5-66.8 nm) when adjusting solution pH to 7.4. These polymersomes were highly sensitive to intracellular pH and reductive environments, which resulted in fast dissociation and aggregation of polymersomes, respectively. Notably, both fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (FITC-BSA) and cytochrome C (FITC-CC) proteins could facilely be encapsulated into polymersomes with excellent protein-loading efficiencies, likely as a result of electrostatic interactions between proteins and PDEA. The in vitro release studies showed that protein release was minimal (<20% in 8 h) at pH 7.4 and 37 °C. The release of proteins was significantly enhanced at pH 6.0 due to collapse of polymersomes. Notably, the fastest protein release was observed under intracellular-mimicking reductive environments (10 mM dithiothreitol, pH 7.4). MTT assays in RAW 264.7 and MCF-7 cells indicated that PEG-SS-PDEA (9.2 k) polymersomes had low cytotoxicity up to a polymer concentration of 300 μg/mL. Confocal laser scanning microscope (CLSM) observations revealed that FITC-CC-loaded PEG-SS-PDEA (9.2 k) polymersomes efficiently delivered and released proteins into MCF-7 cells following 6 h of incubation. Importantly, flow cytometry assays showed that CC-loaded PEG-SS-PDEA (9.2 k) polymersomes induced markedly enhanced apoptosis of MCF-7 cells as compared to free CC and CC-loaded PEG-PDEA (8.9 k) polymersomes (reduction-insensitive control). These dual-bioresponsive polymersomes have appeared to be highly promising for intracellular delivery of protein drugs.  相似文献   

3.
We describe a versatile technique for fabricating monodisperse polymersomes with biocompatible and biodegradable diblock copolymers for efficient encapsulation of actives. We use double emulsion as a template for the assembly of amphiphilic diblock copolymers into vesicle structures. These polymersomes can be used to encapsulate small hydrophilic solutes. When triggered by an osmotic shock, the polymersomes break and release the solutes, providing a simple and effective release mechanism. The technique can also be applied to diblock copolymers with different hydrophilic-to-hydrophobic block ratios, or mixtures of diblock copolymers and hydrophobic homopolymers. The ability to make polymer vesicles with copolymers of different block ratios and to incorporate different homopolymers into the polymersomes will allow the tuning of polymersome properties for specific technological applications.  相似文献   

4.
Vesicles assembled from amphiphilic block copolymers represent promising nanomaterials for applications that include drug delivery and surface functionalization. One essential requirement to guide such polymersomes to a desired site in vivo is conjugation of active, targeting ligands to the surface of preformed self-assemblies. Such conjugation chemistry must fulfill criteria of efficiency and selectivity, stability of the resulting bond, and biocompatibility. We have here developed a new system that achieves these criteria by simple conjugation of 4-formylbenzoate (4FB) functionalized polymersomes with 6-hydrazinonicotinate acetone hydrazone (HyNic) functionalized antibodies in aqueous buffer. The number of available amino groups on the surface of polymersomes composed of poly(dimethylsiloxane)-block-poly(2-methyloxazoline) diblock copolymers was investigated by reacting hydrophilic succinimidyl-activated fluorescent dye with polymersomes and evaluating the resulting emission intensity. To prove attachment of biomolecules to polymersomes, HyNic functionalized enhanced yellow fluorescent protein (eYFP) was attached to 4FB functionalized polymersomes, resulting in an average number of 5 eYFP molecules per polymersome. Two different polymersome-antibody conjugates were produced using either antibiotin IgG or trastuzumab. They showed specific targeting toward biotin-patterned surfaces and breast cancer cells. Overall, the polymersome-ligand platform appears promising for therapeutic and diagnostic use.  相似文献   

5.
We report the formation of polymer vesicles (or polymersomes) by a new class of amphiphilic block copolymers in which the hydrophobic block is a side-on nematic liquid crystal polymer. Two series of these block copolymers, named PEG-b-PA444 and PEG-b-PMAazo444, with different hydrophilic/hydrophobic ratios were synthesized and characterized in detail. Polymersomes and nanotubes were formed by adding water into a solution of copolymers in dioxane. Polymersomes in water were finally obtained by dialyzing the resulting mixture against water. These self-assemblies have been studied by classical TEM and cryo-TEM. For the PEG-b-PA444 series, polymersomes were observed for hydrophilic/hydrophobic ratios ranging from 40/60 to 19/81. For PEG-b-PMAazo444 series, polymersomes were observed for hydrophilic/hydrophobic ratios ranging from 26/74 to 18/82. For a PEG-b-PA444 sample with hydrophilic/hydrophobic ratio equal to 25/75, a tubular morphology with tube diameter of typically 100 nm and tube length of up to 10 mum was also observed together with polymersomes during addition of water into the polymer solution in dioxane.  相似文献   

6.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

7.
We report on a new doubly responsive polymeric system of amphiphilic diblock copolymers, namely poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate), PDEGMA-b-PDIPAEMA, obtained by the reversible addition-fragmentation chain transfer (RAFT) polymerization technique. Molecular characterization by size exclusion chromatography (SEC), nuclearmagnetic resonance (1H-NMR) and infrared spectroscopy (FT-IR) confirms the successful synthesis of these novel block copolymers. The PDEGMA-b-PDIPAEMA block copolymers formed aggregates in aqueous media in response to solution pH and temperature changes, as evidenced by dynamic and static light scattering techniques, as well as fluorescence spectroscopy. Aggregates with PDEGMA core and PDIPAEMA corona domains are formed at elevated temperatures and low pH, whereas aggregates with PDIPAEMA cores and PDEGMA coronas are formed at neutral and high pH. Overall structural characteristics and solution behavior of the copolymers are affected by the copolymer composition. The obtained results provide valuable new information on the behavior and design guidelines for the construction of stimuli responsive, “schizophrenic” polymeric nanostructures with potential application in the biomedical field.  相似文献   

8.
Polymeric micelles and polymersomes may have great potential as the drug delivery vehicles for solubilization of hydrophobic drugs.  相似文献   

9.
In this work, phase diagrams of aqueous two-phase systems (ATPS) containing PEO–PPO–PEO block copolymers and potassium phosphate as well as the partitioning behavior of insulin in these systems are presented. Experiments aimed at the identification of the effects of copolymer structure (by varying the number of EO units per polymer molecule), temperature (283.15 and 298.15 K) and pH (5.0 and 7.0) on the phase behavior of these systems were carried out. The results indicated the enlargement of the two-phase region upon increasing the temperature, pH and copolymer hydrophobicity (expressed as the PO/EO ratio in the copolymer molecule). Experimental measurements of the partitioning of human insulin in these ATPS also indicated the dependency of the partition coefficients on temperature, pH, and copolymer hydrophobicity, with the latter being the most influential factor. Finally, experimental data on the phase behavior and insulin partitioning were correlated using an excess Gibbs energy virial-type model modified in order to account for coulombic interactions and ionization equilibrium between the various forms of the phosphate ion.  相似文献   

10.
Glucose-oxidase based self-destructing polymeric vesicles   总被引:2,自引:0,他引:2  
We have designed oxidation-responsive vesicles from synthetic amphiphilic block copolymers ("polymersomes") of ethylene glycol and propylene sulfide. Thioethers in the hydrophobic poly(propylene sulfide) block are converted into the more hydrophilic sulfoxides and sulfones upon exposure to an oxidative environment, changing the hydrophilic-lipophilic balance of the macroamphiphile and thus inducing its solubilization. Here we sought to explore generation of the oxidative environment and induction of polymersome destabilization through production of hydrogen peroxide by the glucose-oxidase (GOx)/glucose/oxygen system. We studied the encapsulation of GOx within polymersomes, its stability and activity, and glucose-triggered polymersome destabilization. Stimulus-responsive polymersomes may find applications as nanocontainers in sensing devices and as drug delivery systems.  相似文献   

11.
《中国化学快报》2020,31(7):1931-1935
Amphiphilic block copolymers poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) (PEG-b-PMeSPG) were synthesized via ring-opening polymerization of N-3-(methylthio)propyl glycine N-thiocarboxyanhydride (MeSPG-NTA) initiated by amino-terminated PEG. The self-assemblies of three PEG-b-PMeSPG copolymers with different PMeSPG block lengths were first prepared by nanoprecipitation method using THF and DMF, respectively, as the organic solvent, and their morphologies were studied by Cryo-EM and DLS. To prepare polymersomes loaded with glucose oxidase (GOx), double emulsion method followed by extrusion treatment was employed. The oxidation-responsive disruption of polymersomes was achieved upon the introduction of glucose because of the oxidants generated in-situ by GOx/glucose.  相似文献   

12.
We report a series of biocompatible and biodegradable block copolymers of poly(ε‐caprolactone) with “clickable” polyphosphoester (PPE). The block copolymers are synthesized through controlled ring‐opening polymerization of five‐membered cyclic phosphoester monomer, propargyl ethylene phosphate (PAEP), initiated with poly(ε‐caprolactone) macroinitiator. The polymerization followed first‐order kinetics with living polymerization characteristics, thus the molecular weight and composition of copolymers are tunable by adjusting the feed ratio of PAEP monomer to macroinitiator. Azide‐functionalized poly(ethylene glycol) has been grafted to the copolymer to demonstrate the reactive feasibility by Cu(I)‐catalyzed “click” chemistry of azides and alkynes, generating “brush‐coil” polymers. The mild conditions associated with the click reaction are shown to be compatible with poly(ε‐caprolactone) and PPE backbones, rendering the click reaction a generally useful method for grafting numerous types of functionality onto the block copolymers. The block copolymers also show good biocompatibility to cells, suggesting their suitability for a range of biomaterial applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We present the influence of pH, from pH 4 to 10, with a focus on the neutral range, on the adsorption of lysozyme (isoelectric point pI=11) on a sulphonated membrane and the same membrane pre-treated with poly(ethyleneimine) (PEI). We found a steep increase of the adsorbed amount above pH 6 in phosphate buffer. The adsorbed amount was about twice as low in Tris buffer, around the neutral pH. The difference between the two types of buffer is attributed to their different ionic composition. High interfacial concentration in phosphate buffer is especially linked to the phosphate divalent anions. In the presence of divalent sulphate anions, we measured the same level of interfacial concentration than with phosphate buffer. With the PEI pre-treated membrane, we observed, on the time scale of our experiments (15–20 h), similar adsorbed amounts than on the raw membrane, showing that the PEI layer does not constitute a true barrier to the penetration of lysozyme into the membrane core. However, its presence leads to a slower adsorption rate in a system where convection does not occur through the membrane.  相似文献   

14.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

15.
Biodegradable poly(tert‐butyl acrylate)–poly[(R)‐3‐hydroxybutyrate]–poly (tert‐butyl acrylate) triblock copolymers based on bacterial poly[(R)‐3‐hydroxybutyrate] (PHB) were synthesized by atom transfer radical polymerization. The chain architectures of the triblock copolymers were confirmed by 1H NMR and 13C NMR spectra. Gel permeation chromatography analysis was used to estimate the molecular weight characteristics and lengths of the PHB and poly(tert‐butyl acrylate) blocks of the copolymers. The thermal properties of the copolymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA showed that the triblock copolymers underwent stepwise thermal degradation and had better thermal stability than their respective homopolymers, whereas DSC analyses showed that a microphase‐separation structure was formed only in the triblock copolymers with the longer PHB block. As a similar result, from wide‐angle X‐ray diffraction experimentation, the crystalline phase of PHB could not be seen evidently in the triblock copolymers with the shorter PHB block. The enzymatic hydrolysis of the copolymer films was carried at 37 °C and pH 7.4 in a potassium phosphate buffer with an extracellular PHB depolymerase from Penicillum sp. The biodegradability of the triblock copolymers increased with an increase in the PHB block content. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4857–4869, 2005  相似文献   

16.
Novel sugar-responsive block copolymers were prepared by RAFT block copolymerization of unprotected boronic acid monomers, providing a direct route to supramolecular assemblies that dissociate upon the addition of glucose.  相似文献   

17.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

18.
Polymersomes are exciting self-assembled structures with great potential in pharmaceutical applications. A systematic investigation of a novel series of methacrylate-based polymersomes is reported in this study. Five well-defined ABA triblock copolymers with A being based on tri(ethylene glycol) methyl methacrylate and B being based on 2-(diethylamino)ethyl methacrylate (DMAEMA) were synthesized using a living polymerization method. The effect of the composition of the ABA triblock copolymers on the thickness of the hydrophobic membrane of the polymersomes and the release of a model drug is demonstrated.  相似文献   

19.
For efficirent gene transfer, DNA has to be associated with a carrier which can be either of biological (i.e. recombinant viruses) or synthetic origin. In the domain of polymeric synthetic vectors two general types can be envisaged, namely positive polyelectrolytes or neutral amphiphilic block copolymers. Both types can be synthesized by ring-opening cationic polymerization. Several examples show that the versatility of this polymerization technique can be used for the design of structures which after transfection studies, either in vitro or in vivo, can allow conclusions on the most important parameters which govern transfection efficacy. The present study allowed to conclude on the importance of physico-chemical characteristics of these vectors, i.e. the linear macrostructure for the positive polyelectrolytes, and the amphiphilic nature for the neutral block copolymers.  相似文献   

20.
Gao Q  Wang W  Ma Y  Yang X 《Talanta》2004,62(3):477-482
The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue O, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号