首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation of titanium nitride nanoparticles within mesoporous silica SBA-15   总被引:2,自引:0,他引:2  
We report the first synthesis of titanium nitride (TiN) nanoparticles inside the nanoscale channels of mesoporous silica SBA-15. The TiN precursor, Ti(NMe(2))(4) in toluene, was incorporated into the methyl group-modified channels of the SBA-15 powder. The functionalization of pore surfaces with methyl groups generates hydrophobic surfaces that facilitate impregnation with Ti(NMe(2))(4) and minimizes reactions between the TiN precursor and the hydroxyl groups on the surface of SBA-15. Formation of TiN nanoparticles inside the mesoporous channels of SBA-15 was carried out by subsequent ammonolysis at high temperatures (700-750 degrees C). The final products have been characterized by TEM and EELS images, powder XRD patterns, FTIR spectra, UV-vis absorption spectra, and nitrogen adsorption isotherm measurements to confirm the presence and distribution of TiN nanoparticles in the SBA-15 samples.  相似文献   

2.
A novel copolymer with fluorescence properties in mesoporous silica SBA-15 was prepared via a combination of surface-initiated reversible addition-fragmentation chain transfer(RAFT) polymerization and "click" chemistry.A sufficient amount of peroxide groups were introduced into mesoporous silica SBA-15 channel pores and were further used to initiate the RAFT polymerization of styrene and 4-vinylbenzyl azide,resulting in SBA-15 supported polystyrene-co-poly(4-vinylbenzyl azide) copolymer(PS-co-PVBA/SBA-15) hybrid material.The samples were characterized by Fourier transform infrared spectroscopy(FT-IR),transmission electron microscopy(TEM),thermogravimetry analysis(TGA),N_2 adsorption-desorption isotherms and X-ray diffraction(XRD),respectively.The results show that the styrene and 4-vinylbenzyl azide had copolymerized inside mesoporous silica SBA-15.Subsequently,Npropargyl-carbazole(PC) was connected to PS-co-PVBA/SBA-15 hybrid material via "click" reaction,resulting in PS-co-PVBC/SBA-15 with carbazole side groups hybrid material.The fluorescence spectrum is dominated by a broad band from 350 nm to 400 nm in narrow region and the maximum peak is 362 nm,indicating the characteristic absorption of the carbazole group of PS-co-PVBC/SBA-15 hybrid material.  相似文献   

3.
Brominated epoxy resin (BER) composites containing various amounts of SBA-15 and SBA-16 types mesoporous silicas were prepared through the thermal curing with 3-methyl-tetrahydrophthalic anhydride, and their morphologies, dielectric constants (κ), thermal properties and mechanical properties were studied. The investigation suggested that the dielectric constant could be reduced from 4.09 of the pure thermosetting BER to 3.74 and 3.7 by incorporating 3 wt.% SBA-15 and SBA-16, respectively. The reduction of the dielectric constant is attributed to the incorporation of the air voids (κ = 1) stored within the mesoporous silica materials, the air volume existing in the gaps on the interfaces between the mesoporous silica and the BER matrix, and the free volume created by introducing large-sized domains. The BER/mesoporous silica composites also present stable dielectric constants across the wide frequency range. An improvement of thermal stability of the BER is achieved by incorporation of the mesoporous silica materials. The enhanced interfacial interaction between the surface-modified mesoporous silica and the BER matrix has also led to an improvement of the toughness.  相似文献   

4.
Ag/SBA-15复合材料的制备及其抗菌性质   总被引:9,自引:1,他引:8  
本文采用二维六方结构的介孔硅SBA-15作为主体, 先将其浸渍在葡萄糖溶液中, 利用土伦试剂在原位发生氧化-还原反应, 成功地在介孔孔道中制备出分散的银纳米粒子, 并以金黄葡萄球菌为研究对象, 对Ag/SBA-15的抑菌性能及持续抑菌能力进行了检测, 结果表明, 样品对金黄葡萄球菌有明显的抑菌作用并具有持续的抑菌能力.  相似文献   

5.
In this study, the mesoporous silica SBA-15 materials containing carboxylic acid groups were used as an effective support to synthesize Cu nanoparticles. Various Cu loading levels from 4% to 13% on SBA-15 catalysts produced an average particle size of 2.8 to 3.1 nm, regardless of the Cu content.  相似文献   

6.
A highly active heterogeneous Fenton catalyst was fabricated by impregnating iron oxide nanoparticles in alumina coated mesoporous SBA-15 silica.  相似文献   

7.
CdS nanoparticles, as prepared in reverse micellar systems, were incorporated into alkanedithiol-modified Zn-doped SBA-15 mesoporous silica (dtz.sbnd;ZnSBA-15; pore diameter, ca. 4 nm), which were themselves prepared via hydrolysis of tetraethylorthosilicate (TEOS) in the presence of Zn(NO(3))(2) and triblock copolymer, as a nonsurfactant template and pore-forming agent, followed by contact with dithiol molecules. A particle-sieving effect for the dtz.sbnd;ZnSBA-15 was observed, in that the incorporation of the nanoparticles was remarkably decreased with increasing the nanoparticle size. The resulting CdSz.sbnd;ZnSBA-15 composite was then used as photocatalysts for the generation of H(2) from 2-propanol aqueous solution. Under UV irradiation (lambda>300 nm), a high photocatalytic activity was observed for this composite material. This is effected by electron transfer from the photoexcited ZnS (dithiol-bonded Zn on SBA-15) to CdS nanoparticles. The photocatalytic activity is increased with a decrease in the number of methylene groups in the dithiol molecules, according to the rank order 1,10-decanedithiol < 1,6-hexanedithiol < 1,2-ethanedithiol.  相似文献   

8.
Magnetic Fe(3)O(4)@mesoporous silica (MS) composites were synthesized by generating Fe(3)O(4) nanoparticles in the mesoporous silica matrix using the sol-gel method in nitrogen atmosphere. The mesoporous silica hosts include SBA-15 particles owning highly ordered p6mm mesostructure, siliceous mesostructured cellular foams (MCFs), and fiber-like mesoporous silica (FMS) with unique pore structures. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and N(2) adsorption/desorption results show that Fe(3)O(4) functionalized MCFs and FMS possess suitable mesoporous structure for the adsorption of both small-molecular drug and large biomolecules. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of these systems. These Fe(3)O(4)@mesoporous silica composites show sustained release properties for aspirin in vitro. The release of the aspirin molecules from the pores of the Fe(3)O(4)@mesoporous silica composites is basically a diffusive process. Fe(3)O(4)@MCFs and Fe(3)O(4)@FMS owning larger pore size are good candidates for the adsorption of bovine serum albumin (BSA). These magnetic composites can be potential vectors for drug delivery and bioadsorption.  相似文献   

9.
制备了中孔分子筛SBA-15,以SBA-15为载体采用真空浸渍法制备了负载型Ru基水煤气变换反应的催化剂。利用透射电子显微镜、X-射线粉末衍射等方法对样品进行了表征。结果表明,合成的SBA-15分子筛孔径约为8 nm,粒径约为1 nm的Ru纳米粒子均匀分布在分子筛孔道中,添加适量的La2O3助剂可以显著提高催化剂的低温活性。当Ru和La2O3的负载量分别为4%和8%时,R4L8/SBA-15催化剂对CO转化率在255℃和265℃下分别达到56%和98%。  相似文献   

10.
Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.  相似文献   

11.
Highly ordered mesoporous silica can be regenerated from a mesoporous carbon CMK-3 that is a negative replica of mesoporous silica SBA-15, indicating reversible replication between carbon and inorganic materials.  相似文献   

12.
Here we report a novel hard-templating strategy for the synthesis of mesoporous monocrystalline Pt nanoparticles (NPs) with uniform shapes and sizes. Mesoporous Pt NPs were successfully prepared through controlled chemical reduction using ascorbic acid by employing 3D bicontinuous mesoporous silica (KIT-6) and 2D mesoporous silica (SBA-15) as a hard template. The particle size could be controlled by changing the reduction time. Interestingly, the Pt replicas prepared from KIT-6 showed polyhedral morphology. The single crystallinity of the Pt fcc structure coherently extended over the whole particle.  相似文献   

13.
Ag nanowires within the channels of mesoporous silica have been successfully synthesized via a double solvent technique, in which n-hexane is used as a hydrophobic solvent to disperse mesoporous silica and an AgNO(3) aqueous solution is used as a hydrophilic solvent to fill mesochannels. The morphology of the obtained Ag (nanowires, nanoparticles or nanorods) can be controlled by adjusting the concentration of AgNO(3) solution and the template pore size. HRTEM images demonstrate extensive Ag nanowires with several to tens of hundreds nanometers in length are deposited along the long axis of mesochannels when the atomic AgNO(3)/Si ratio is 0.090. When the atomic AgNO(3)/Si ratio is 0.068 or 0.11, there is a combination of Ag nanoparticles and nanowires; nanoparticles are mainly formed when the atomic AgNO(3)/Si ratio is higher than 0.14. Further, the catalytic results of the oxidation of styrene show that styrene oxide and benzaldehyde are the main products of the reaction, and the morphology and diversity of Ag in Ag/mesoporous silica composites have an effect on the conversion of styrene and selectivity of styrene oxide.  相似文献   

14.
A method established in the present study has proven to be effective in the synthesis of Mn(2)O(3) nanocrystals by the thermolysis of manganese(III) acetyl acetonate ([CH(3)COCH=C(O)CH(3)](3)-Mn) and Mn(3)O(4) nanocrystals by the thermolysis of manganese(II) acetyl acetonate ([CH(3)COCH=C(O)-CH(3)](2)Mn) on a mesoporous silica, SBA-15. In particular, Mn(2)O(3) nanocrystals are the first to be reported to be synthesized on SBA-15. The structure, texture, and electronic properties of nanocomposites were studied using various characterization techniques such as N2 physisorption, X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results of powder XRD at low angles show that the framework of SBA-15 remains unaffected after generation of the manganese oxide (MnO(x)) nanoparticles, whereas the pore volume and the surface area of SBA-15 dramatically decreased as indicated by N2 adsorption-desorption. TEM images reveal that the pores of SBA-15 are progressively blocked with MnO(x) nanoparticles. The formation of the hausmannite Mn(3)O(4) and bixbyite Mn(2)O(3) structures was clearly confirmed by XRD. The surface structures of MnO(x) were also determined by LRS, XPS, and TPR. The crystalline phases of MnO(x) were identified by LRS with corresponding out-of-plane bending and symmetric stretching vibrations of bridging oxygen species (M-O-M) of both MnO(x) nanoparticles and bulk MnO(x). We also observed the terminal Mn=O bonds corresponding to vibrations at 940 and 974 cm-1 for Mn(3)O(4)/SBA-15 and Mn(2)O(3)/SBA-15, respectively. These results show that the MnO(x) species to be highly dispersed inside the channels of SBA-15. The nanostructure of the particles was further identified by the TPR profiles. Furthermore, the chemical states of the surface manganese (Mn) determined by XPS agreed well with the findings of LRS and XRD. These results suggest that the method developed in the present study resulted in the production of MnO(x) nanoparticles on mesoporous silica SBA-15 by controlling the crystalline phases precisely. The thus-prepared nanocomposites of MnO(x) showed significant catalytic activity toward CO oxidation below 523 K. In particular, the MnO(x) prepared from manganese acetyl acetonate showed a higher catalytic reactivity than that prepared from Mn(NO(3))2.  相似文献   

15.
Platinum nanoparticles in the size range of 1.7-7.1 nm were produced by alcohol reduction methods. A polymer (poly(vinylpyrrolidone), PVP) was used to stabilize the particles by capping them in aqueous solution. The particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM investigations demonstrate that the particles have a narrow size distribution. Mesoporous SBA-15 silica with 9-nm pores was synthesized by a hydrothermal process and used as a catalyst support. After incorporation into mesoporous SBA-15 silica using low-power sonication, the catalysts were calcined to remove the stabilizing polymer from the nanoparticle surface and reduced by H2. Pt particle sizes determined from selective gas adsorption measurements are larger than those determined by bulk techniques such as XRD and TEM. Room-temperature ethylene hydrogenation was chosen as a model reaction to probe the activity of the Pt/SBA-15 materials. The reaction was shown to be structure insensitive over a series of Pt/SBA-15 materials with particle sizes between 1.7 and 3.6 nm. The hydrogenolysis of ethane on Pt particles from 1.7 to 7.1 nm was weakly structure sensitive with smaller particles demonstrating higher specific activity. Turnover rates for ethane hydrogenolysis increased monotonically with increasing metal dispersion, suggesting that coordinatively unsaturated metal atoms present in small particles are more active for C2H6 hydrogenolysis than the low index planes that dominate in large particles. An explanation for the structure sensitivity is suggested, and the potential applications of these novel supported nanocatalysts for further studies of structure-activity and structure-selectivity relationships are discussed.  相似文献   

16.
Trypsin has been encapsulated in the mesopores of a hierarchical mesoporous silica material synthesized via Cu(I) catalyzed azide-alkyne click reaction between azide functionalized large spherical SBA-15 particles and alkyne functionalized mesoporous silica nanoparticles (MSNs). Encapsulated trypsin functions as an efficient biocatalyst and can be recycled several times.  相似文献   

17.
Surface immobilization of active species onto mesoporous materials is gaining importance, especially in the design of functionalized mesoporous materials as a nanocatalyst through heterogenization of homogeneous catalytic systems. This article summarizes recent work on the synthesis, characterization and catalytic performance of the functionalized mesoporous catalysts performed by the present authors. A cationic rhenium(I) complex was encapsulated into mesoporous Al-MCM-41 molecular sieve using a ion-exchange method, yielding a new photocatalyst to be active for photocatalytic reduction of CO2. Surface functionalization of mesoporous silica SBA-15 with sulfonic acid groups was investigated to give a solid acid catalyst. The chemically modified Fe-containing mesoporous materials, which are active for hydroxylation of phenol, were prepared by a surface-grafting method that iron salts are immobilized onto mesoporous Si-MCM-41 with the help of 3-aminopropyltrimethoxysilane as a linker. A cobalt(III) complex was heterogenized onto mesoporous silica SBA-15 containing carboxylic groups in order to utilize as a solid catalyst for the liquid-phase oxidation of aromatic hydrocarbons.  相似文献   

18.
The vibrational properties of mesoporous silica (SBA-15) were investigated by deep ultraviolet (UV) Raman and infrared spectroscopies with and without the presence of platinum nanoparticles in the mesopores that were incorporated by sonication. Raman and IR spectral line assignments were made by comparison to amorphous silicas. This procedure permitted identification of vibrations of longitudinal (LO) and transverse (TO) optical lattice modes, the presence of Si-OH, and vibrational modes associated with the presence of three-, four-, and six-membered siloxane rings. Hydraulic pressing of the mesoporous silica with pressure in the range 3-7 tons cm(-2) destroys the X-ray diffraction pattern and strongly decreases the Raman peak (D2) associated with three-membered rings at the surface. In the presence of platinum nanoparticles in the silica mesopores, a peak attributed to a Pt-O stretching vibration appears at between 530 and 580 cm(-1) in the UV-Raman spectrum, which can be used to monitor the presence of the platinum particles and their interaction with the support. The D2 feature in the UV-Raman spectra also decreases with increasing Pt loading, which is attributed to interactions of the Pt nanoparticles with the silica surface.  相似文献   

19.
Sun LB  Kou JH  Chun Y  Yang J  Gu FN  Wang Y  Zhu JH  Zou ZG 《Inorganic chemistry》2008,47(10):4199-4208
Direct generation of superbasicity on mesoporous silica SBA-15 was realized by tailoring the host-guest interaction, and calcium species were selected as the guest in modifying SBA-15. The results show that calcium species could be homogeneously distributed on the surface of SBA-15. Because of the host-guest interaction, the decomposition of the supported calcium nitrate was apparently easier than the bulk one. Surprisingly, the calcium nitrates modified SBA-15 (CaNS) samples exhibited superbasicity with good preservation of the mesostructure after activation, differing from the potassium nitrate loaded SBA-15 samples that displayed weak basicity with collapsed mesostructure. The present superbasic CaNS materials also possess good water resistance and high surface areas, up to 429 m(2) g(-1), which is promising for their potential applications in adsorption and catalysis. Further investigation concerning the roles played by the guest in basicity formation on SBA-15 was conducted. The samples modified by Group 2 metal nitrates showed strong basicity with base strength (H-) of 22.5-27.0 and good preservation of mesostructure. In contrast, loading Group 1 metal nitrates on SBA-15 produced samples with weak basicity ( H-=9.3-15.0) and collapsed mesostructure after activation. Such differences can be related to the interaction between the resulting metal oxide and the silica support, as well as the mobility of the cations in the metal oxide.  相似文献   

20.
New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g−1 using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号