首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of the kind and concentration of stabilizers on the nonspherical shape of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles prepared by release of toluene from PS/PMMA/toluene droplets dispersed in stabilizer aqueous solution were examined. In the case of poly(vinyl alcohol), the surfaces of the obtained particles always had a single dimple. In the case of sodium dodecyl sulfate (SDS), the shapes of the composite particles changed from the dimple, via acorn, to spherical with increasing SDS concentration. It was clarified that the dimple and acorn shapes of the PS/PMMA composite particles were caused by contraction of the PS phase after hardening of the PMMA phase in excentered core-shell and hemisphere morphologies, respectively, which were formed by phase separation during toluene evaporation.  相似文献   

2.
Samples of low-molecular-weight polystyrene (PS) in poly(methyl methacrylate) (PMMA) were prepared by first dissolving PS in methyl methacrylate monomer and then polymerizing the monomer. Forty-three specimens of varying number-average molecular weight (2100–49,000) and composition (5–40 wt %) of PS were prepared, and the surface morphology and phase relationships studied by scanning electron microscopy. Four distinct types of phase relationships were observed: (i) a single phase consisting of PS dissolved in PMMA; (ii) PS dispersed in PMMA; (iii) PMMA dispersed in PS; and (iv) regions of PS dispersed in PMMA coexisting with regions of PMMA dispersed in PS. Values of the size and population density of the dispersed particles are reported. Finally, the size and distribution of the dispersed particles and the various types of phase relationships are discussed in terms of the ternary polystyrene/poly(methyl methacrylate)/methyl methacrylate phase diagram.  相似文献   

3.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

4.
Morphology, thermal and rheological properties of polymer‐organoclay composites prepared by melt‐blending of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends with Cloisite® organoclays were examined by transmission electron microscopy, small‐angle X‐ray scattering, secondary ion mass spectroscopy, differential scanning calorimetry, and rheological techniques. Organoclay particles were finely dispersed and predominantly delaminated in PMMA‐clay composites, whereas organoclays formed micrometer‐sized aggregates in PS‐clay composites. In PS/PMMA blends, the majority of clay particles was concentrated in the PMMA phase and in the interfacial region between PS and PMMA. Although incompatible PS/PMMA blends remained phase‐separated after being melt‐blended with organoclays, the addition of organoclays resulted in a drastic reduction in the average microdomain sizes (from 1–1.5 μm to ca. 300–500 nm), indicating that organoclays partially compatibilized the immiscible PS/PMMA blends. The effect of surfactant (di‐methyl di‐octadecyl‐ammonia chloride), used in the preparation of organoclays, on the PS/PMMA miscibility was also investigated. The free surfactant was more compatible with PMMA than with PS; the surfactant was concentrated in PMMA and in the interfacial region of the blends. The microdomain size reduction resulting from the addition of organoclays was definitely more significant than that caused by adding the same amount of free surfactant without clay. The effect of organoclays on the rheological properties was insignificant in all tested systems, suggesting weak interactions between the clay particles and the polymer matrix. In the PS system, PMMA, and organoclay the extent of clay exfoliation and the resultant properties are controlled by the compatibility between the polymer matrix and the surfactant rather than by interactions between the polymer and the clay surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 44–54, 2003  相似文献   

5.
Phase separation of polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends was used as a means to segregate PS‐ or PMMA‐functionalized single‐walled carbon nanotubes (SWNTs) in thin films. Dilute solutions (5 wt % in THF) of 1:1 PS/PMMA blends containing the functionalized nanotubes were spin cast and annealed at 180 °C for 12 h. Two different polymer molecular weights were used (Mn = 8000 or Mn = 22,000), and were of approximately equivalent molecular weight to those attached to the surface of the nanotubes. Nanotube functionalization was accomplished using the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition, in which alkyne‐decorated nanotubes were coupled with azide‐terminated polymers, resulting in polymer‐SWNT conjugates that were soluble in THF. Characterization of the annealed films by scanning Raman spectroscopy, which utilized the unique Raman fingerprint of carbon nanotubes, enabled accurate mapping of the functionalized SWNTs within the films relative to the two phase‐separated polymers. It was found that nanotube localization within the phase‐separated polymer films was influenced by the type of polymer attached to the nanotube surface, as well as its molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 450–458, 2009  相似文献   

6.
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene(PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles.The obtained peanut-shaped particles showed a novel internal morphology:PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.  相似文献   

7.
A novel amphiphilic miktoarm star polymer, polystyrene‐poly(ethylene glycol)‐poly(methyl methacrylate), bearing a pyrene group at the end of PS arm (Pyrene‐PS‐PEG‐PMMA) was successfully synthesized via combination of atom transfer radical polymerization and click chemistry. The structure and composition of the amphiphilic miktoarm star polymer were characterized by gel permeation chromatography and 1H NMR. The functionalization of multiwalled carbon nanotubes (MWCNTs) via “π–π” stacking interactions with pyrene‐PS‐PEG‐PMMA miktoarm star polymer was accomplished and the resulting polymer‐MWCNTs hybrid was analyzed by using 1H NMR, UV–vis, fluorescence spectroscopy, and thermal gravimetric analysis. The high‐resolution transmission electron microscopy and analytical techniques aforementioned confirmed that the noncovalent functionalization of MWCNT's with the amphiphilic miktoarm star polymer was successfully achieved. The MWCNT/pyrene‐PS‐PEG‐PMMA exhibited significant dispersion stability in common organic solvents such as dimethyl formamide, chloroform, and tetrahydrofuran. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
We present an experimental study of polymer–polymer reaction kinetics at the interfaces between two immiscible polymer phases under flow in a batch mixer of type Haake Rheocord. To that end, we have developed a model chemical system that is composed of a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA). A small fraction of PS bear hydroxyl terminal group (PS-OH) and that of PMMA contain nonclassical isocyanate moieties that are randomly distributed along the PMMA chains (PMMA-r-NCO). This reactive system is particularly pertinent to modeling practical reactive blending processes because the amount and rate of copolymer formation can be determined with great accuracy (on the order of ppm). This study shows that the overall reaction rate is controlled primarily by interfacial generation through convective mixing. Most reaction and morphological development are accomplished within a very short period of time (1–3 min). For a PS/PMMA (60/40) reactive blend, the ultimate size of the PMMA particles is as small as 0.2 μm and is reached within 2 to 3 min. A surface coverage of about 0.5 of the PMMA particles by a monolayer of the copolymer is enough to prevent dynamic coalescence, whereas a much higher surface coverage is needed to eliminate static coalescence. In the nonentangled regime (Mn of the PS-OH = 7800 g/mol), temperature has a significant effect on the reaction rate, while it has little effect in the entangled regime (Mn of the PS-OH = 53,200 g/mol). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2153–2163, 1998  相似文献   

9.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

10.
A unique porous polymeric film was prepared by drying a ternary polymer solution: a polystyrene (PS), polyethylene glycol (PEG), and toluene solution. Highly ordered micropores, ranging from 5 to 12 mum in diameter, were formed on the film surface, and the rim of each micropore was surrounded by a ring of PEG. The effects of the weight ratio of the polymer blend and molecular weight of the polymer (PEG) on the porous structure were investigated. Based on in situ visual observation and light scattering measurements, the formation mechanism of the porous structure was speculated to be a two step phase separation: the phase separation into PEG-rich and PEG-poor (i.e., PS-rich) phases occurred first at the surface area of the ternary solutions, where polymers were condensed due to solvent evaporation. The PEG-rich phase became droplets and had an ordered structure on the surface. The PEG-poor phase became a matrix where PS and solvent coexisted as a single phase solution. Secondary phase separation then followed in the PEG droplets, which was induced by further solvent evaporation, and formed into solvent-rich and PEG-rich domains within the droplets. Solvent evaporation and secondary phase separation created a cavity structure in each PEG droplet structured on the film surface.  相似文献   

11.
Nonspherical polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles having a dent were prepared by releasing toluene from PS/PMMA/toluene droplets dispersed in a poly(vinyl alcohol) aqueous medium. An ex-centered PS-core/PMMA-shell morphology, in which a part of the PS core contacted with the aqueous medium and toluene partitioned more in the PS core than in the PMMA shell, was formed in the polymers/toluene droplet in the process of phase separation therein with releasing toluene. The volume of the dent became bigger with an increase in the PS content and in the toluene content partitioned in the PS core.Part CCLXI of the series Studies on Suspension and Emulsion.  相似文献   

12.
The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to separate microalgae (Tetraselmis suecica from Phaeodactylum tricornutum). Two spiral microchannels with the same cross section dimension but different outlet geometry were considered and tested to investigate the particle focusing behavior and separation efficiency. As compared with particle focusing observed in channels with a simple outlet, the particle focusing in a modified outlet geometry appears in a more successful focusing manner with complete separation. This simple approach of particle separation makes it attractive for lab-on-a-chip devices for continuous extraction and filtration of a wide range of cell/particle sizes.  相似文献   

13.
Phase-separation behavior within polymerizing divinylbenzene/toluene droplet dissolving polystyrenes (PS) was investigated to clarify the formation mechanism of the hollow polymer particles by suspension polymerization. No hollow particles were obtained at a low content of low-molecular-weight PS where phase separation occurred at high conversion. On the other hand, hollow particles were obtained at a high content of high-molecular-weight PS where phase separation occurred at low conversion. The phase separation in an early stage of the polymerization, which was promoted by the presence of PS and cross-links of polydivinylbenzene, was a key factor for the formation of the hollow structure.  相似文献   

14.
The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.  相似文献   

15.
以乳液聚合制备的聚苯乙烯乳液为种子,加入甲基三甲氧基硅烷(MTMS)水解溶液进行缩聚反应,合成亚微米级聚苯乙烯/聚硅氧烷核壳粒子,并以此作为光散射剂添加至聚甲基丙烯酸甲酯(PMMA)树脂中,制备了光散射材料;考察了亚微米级核壳粒子添加在PMMA树脂中的分散性。结果表明:经过双螺杆剪切作用的挤出加工后,可以实现核壳粒子在PMMA树脂中的良好分散。核壳粒子可以大幅度提高PMMA的雾度,当聚苯乙烯/聚硅氧烷核壳粒子(NS82)的含量为1%时,制得的PMMA样片(厚度为2 mm)的雾度为89%,透光率为69%,有效光散射系数为61%。  相似文献   

16.
The effect of molecular weight on the morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles was investigated. PS/PMMA composite particles with different molecular weights (M*=MwPS+MwPMMA)/2 approximately 2x10(4)-1x10(6) g.mol(-1)) were prepared by the release of toluene (T) from PS/PMMA/T (1/1/24, w/w/w) droplets dispersed in an aqueous solution of polyoxyethylene nonylphenyl ether nonionic surfactant (Emulgen 911). As T evaporated, the spherical droplets phase separated, resulting in snowmanlike composite particles with Janus morphology. The nonspherical shape was closely related to the morphology, which depended on M*. The interfacial tension between the phase-separated PS and PMMA phases increased with an increase in M*, and this would allow the formation of the snowmanlike shape to decrease the interfacial area between the PS and the PMMA phases.  相似文献   

17.
This paper describes the first use of polymer-coated quantum dots (QDs) as fluorescent tracers for LSCFM imaging of phase morphology in polymer blends. Cadmium sulfide (CdS) QDs stabilized at the surface with a PS-b-PAA block copolymer are shown to be well dispersed via their polystyrene (PS) brush layer in the PS phase of solvent-cast 40/60 (w/w) PS/PMMA blends. The QDs are excluded from the PMMA phase, providing excellent fluorescence contrast for LSCFM imaging of the phase-separated blends. The presence of PS-b-PAA-stabilized QDs does not appear to affect the blend morphology, since the observed morphologies are the same when the percentage of QDs within the PS phase is varied from 10 to 50 wt %. These QD fluorescent tracers are used to characterize several aspects of blend morphology in solvent-cast 40/60 PS/PMMA blends containing PS homopolymer with either 100 (low molecular weight) or 1250 (high molecular weight) repeat units. In the PS(1250)/PMMA blends, a percolating distribution of PMMA droplets (2-25 mum) in a PS matrix is observed in the bulk, and a distinct inversion in the continuous phase is found near the glass substrate. In the PS(100)/PMMA blends, a "phase-in-phase" morphology is found, consisting of large PS domains (20-100 mum) dispersed in a PMMA continuous phase and small PMMA domains (1-2 mum) scattered throughout the larger PS droplets. The observed change in blend structure is attributed to a lower interfacial tension for the lower molecular weight PS.  相似文献   

18.
Currently, there is very limited information on the electrophoretic behavior of particles at a liquid–liquid interface formed by two conducting liquid solutions. Here, electrophoretic velocities of polystyrene particles at a polyethylene glycol (PEG)–dextran (DEX) interface were investigated in this paper. Experimental results show that the particle at the interface moves in the opposite direction to the applied electric field, with a velocity much lower than that in the PEG-rich phase and a litter larger than that in the DEX-rich phase. Similarly to the movement in Newtonian fluids, the velocity increases linearly with the increase in the applied electric field. Different to particle electrophoresis in Newtonian fluids, the velocities of the particles at the PEG–DEX interface increase linearly with the decrease in particle's diameters, implying a possible size-based particle differentiation at an interface.  相似文献   

19.
Micron-sized, monodispersed, “onion-like” multilayered poly(methyl methacrylate) (PMMA)/polystyrene (PS) (1/1, w/w) composite particles were prepared by the solvent-absorbing/releasing method (SARM). The viscosity within toluene-swollen composite particles, the release rate of toluene therefrom, the PMMA/PS ratio, and the kind of solvent had great influences on the reconstruction of the morphology of the PMMA/PS composite particles by the SARM. From these results, the conditions for the preparation of the multilayered composite particles by the SARM are clarified. Received: 28 September 2000 Accepted: 27 October 2000  相似文献   

20.
Blends of polystyrene/poly(oxyethylene) (PS/POE) and polystyrene/poly-(methyl methacrylate) (PS/PMMA) have been obtained by casting from solution. Differential Scanning Calorimetry, Optical Microscopy, and Scanning Electron Microscopy showed that two incompatible polymers can present relatively good miscibility (formation of domains smaller than 5 μm) when the solvent from which the films are obtained does not present any noticeable selectivity towards the two polymers of the blends. An increase of the casting temperature increases the miscibility of PS and PMMA because the selectivity of the solvent used, towards these polymers decreases with increasing temperature. On the contrary, an increase of the casting temperature in the case of the PS and POE mixture decreases their miscibility because the selectivity of the solvent used increases with increasing temperature. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1051–1060, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号