首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let F be a family of probability distributions. Let O, C1Cn be real functions on F. Let z1zn be real numbers. Then we consider the problem of maximization of the object function O(F)(F?F) under the equality constraints C1(F)=z1(i=1,…,n) . The theory is developed in order to solve problems of the following kind: Find the maximal variance of a stop-loss reinsured risk under partial information on the risk such as its range and two first moments.  相似文献   

2.
Let Xj = (X1j ,…, Xpj), j = 1,…, n be n independent random vectors. For x = (x1 ,…, xp) in Rp and for α in [0, 1], let Fj1(x) = αI(X1j < x1 ,…, Xpj < xp) + (1 ? α) I(X1jx1 ,…, Xpjxp), where I(A) is the indicator random variable of the event A. Let Fj(x) = E(Fj1(x)) and Dn = supx, α max1 ≤ Nn0n(Fj1(x) ? Fj(x))|. It is shown that P[DnL] < 4pL exp{?2(L2n?1 ? 1)} for each positive integer n and for all L2n; and, as n → ∞, Dn = 0((nlogn)12) with probability one.  相似文献   

3.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

4.
Let Ω denote a simply connected domain in the complex plane and let K[Ω] be the collection of all entire functions of exponential type whose Laplace transforms are analytic on Ω′, the complement of Ω with respect to the sphere. Define a sequence of functionals {Ln} on K[Ω] by Ln(f) = 12πiΓ gn(ζ) F(ζ) dζ, where F denotes the Laplace transform of f, Γ ? Ω is a simple closed contour chosen so that F is analytic outside and on Ω, and gn is analytic on Ω. The specific functionals considered by this paper are patterned after the Lidstone functions, L2n(f) = f(2n)(0) and L2n + 1(f) = f(2n)(1), in that their sequence of generating functions {gn} are “periodic.” Set gpn + k(ζ) = hk(ζ) ζpn, where p is a positive integer and each hk (k = 0, 1,…, p ? 1) is analytic on Ω. We find necessary and sufficient conditions for f ∈ k[Ω] with Ln(f) = 0 (n = 0, 1,…). DeMar previously was able to find necessary conditions [7]. Next, we generalize {Ln} in several ways and find corresponding necessary and sufficient conditions.  相似文献   

5.
Consider a spline s(x) of degree n with L knots of specified multiplicities R1, …, RL, which satisfies r sign consistent mixed boundary conditions in addition to s(n)(a) = 1. Such a spline has at most n + 1 ?r + ∑j = 1LRj zeros in (a, b) which fulfill an interlacing condition with the knots if s(x) ? = 0 everywhere. Conversely, given a set of n ?r + ∑j = 1LRj zeros then for any choice η1 < ··· < ηL of the knot locations which fulfills the interlacing condition with the zeros, the unique spline s(x) possessing these knots and zeros and satisfying the boundary conditions is such that s(n)(x) vanishes nowhere and changes sign at ηj if and only if Rj is odd. Moreover there exists a choice of the knot locations, not necessarily unique, which makes ¦s(n)(x)¦ ≡ 1. In particular, this establishes the existence of monosplines and perfect splines with knots of given multiplicities, satisfying the mixed boundary conditions and possessing a prescribed maximal zero set. An application is given to double-precision quadrature formulas with mixed boundary terms and a certain polynomial extremal problem connected with it.  相似文献   

6.
Let F1(x, y),…, F2h+1(x, y) be the representatives of equivalent classes of positive definite binary quadratic forms of discriminant ?q (q is a prime such that q ≡ 3 mod 4) with integer coefficients, then the number of integer solutions of Fi(x, y) = n (i = 1,…, 2h + 1) can be calculated for each natural number n using L-functions of imaginary quadratic field Q((?q)1/2).  相似文献   

7.
In this note we demonstrate the existence of E0L forms F and G which are n-similar, i.e. Ln(F) = Ln(G) but Ln+1(F)≠Ln+1(G) for n ∈ {2, 3}. This partially solves an open problem from [3].  相似文献   

8.
9.
Let A be an arragement of n lines in the plane. Suppose that F1,…,Fr are faces of A and that V,…,Vs are vertices of A. Suppose also that each Fi is a (Vj) of the lines of A intersect at Vj. Then we show that
i=1rt(Fi + j=1st(Vj)?n+4r2+s2+ 2rs
.  相似文献   

10.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

11.
Let n be a positive integer, L a subset of {0, 1,…,n}. We discuss the existence of partitions (or tilings) of the n-dimensional binary vector space Fn into L-spheres. By a L-sphere around an x in Fn we mean {y ? Fn, d(x, y) ? L}, d(x, y) being the Hamming distance betwe en x and y. These tilings are generalizations of perfect error correcting codes. We show that very few such tilings exist (Theorem 2) and characterize them all for any L ? {0, 1,…,[12n]}.  相似文献   

12.
Let T(R) denote the set of all tournaments with score vector R = (r1, r2,…, rn). R. A. Brualdi and Li Qiao (“Proceedings of the Silver Jubilee Conference in Combinatorics at Waterloo,” in press) conjectured that if R is strong with r1r2 ≤ … ≤ rn, then |T(R)| ≥ 2n?2 with equality if and only if R = (1, 1, 2,…, n ? 3, n ? 2, n ? 2). In this paper their conjecture is proved, and this result is used to establish a lower bound on the cardinality of T(R) for every R.  相似文献   

13.
A new result on products of matrices is proved in the following theorem: let Mi (i=1,2,…) be a bounded sequence of square matrices, and K be the l.u.b. of the spectral radii ρ(Mi). Then for any positive number ε there is a constant A and an ordering p(j) (j = 1,2,…) of the matrices such that
j=1nMp(j)?A·(K+ε)n (n = 1,2,…)
. The ordering is well defined by p(j), a one-to-one mapping on the set of positive integers. In general the inequality does not hold for any ordering p(j) (a counterexample is provided); however, some sufficient conditions are given for the result to remain true irrespective of the order of the matrices.  相似文献   

14.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

15.
We consider the general problem
supм?M∫?dм|∫?dм=z1(i=1…n)
, where the integrals are over an abstract space Ω, the functions ?i(i=0)…..n) are defined on that space, and where μm varies in a cone M of measures defined on the space. The integral on the left of the bar has to be maximized. The equalities on the right of the bar are further constraints on μ. The solution of this primal problem goes via the solution of an associated dual problem. The particular cases where M is the cone of positive measures and the cone of positive unimodal measures with fixed mode are investigated in more detail.Only two simple illustrations are given, but several actuarial applications are planned by De Vylder, Goovaerts and Haezendonck.  相似文献   

16.
An n-frame on a Banach space X is E=(E1,?, En) where the Ej's are bounded linear operators on X such that Ej≠0,
j=1nEj
, and EjEkjkEk (j, k=1,?, n). It is known that if two n-frames E and F are sufficiently close to each other, then they are similar, that is, Fj=TEjT-1 with T a bounded linear operator. Among the operators which realize the similarity of the two frames, there is the balanced transformation U(F, E)=(Σnj=1FjEj)(Σnj=1EjFjEj)-12. One of our main results is a local characterization of the balanced transformation. Another operator which implements the similarity between E and F is the direct rotation R(F, E). It comes up in connection with the study of the set of all n-frames as a Banach manifold with an affine connection. Finally, it is shown that for quite a large set of pairs of 2-frames, the direct rotation has a global characterization.  相似文献   

17.
Let X be a finite set of n-melements and suppose t ? 0 is an integer. In 1975, P. Erdös asked for the determination of the maximum number of sets in a family F = {F1,…, Fm}, Fi ? X, such that ∥FiFj∥ ≠ t for 1 ? ij ? m. This problem is solved for n ? n0(t). Let us mention that the case t = 0 is trivial, the answer being 2n ? 1. For t = 1 the problem was solved in [3]. For the proof a result of independent interest (Theorem 1.5) is used, which exhibits connections between linear algebra and extremal set theory.  相似文献   

18.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

19.
Let F be a field, F1 be its multiplicative group, and H = {H:H is a subgroup of F1 and there do not exist a, b?F1 such that Ha+b?H}. Let Dn be the dihedral group of degree n, H be a nontrivial group in H, and τn(H) = {α = (α1, α2,…, αn):αi?H}. For σ?Dn and α?τn(H), let P(σ, α) be the matrix whose (i,j) entry is αiδiσ(j) (i.e., a generalized permutation matrix), and
P(Dn, H) = {P(σ, α):σ?Dn, α?τn(H)}
. Let Mn(F) be the vector space of all n×n matrices over F and TP(Dn, H) = {T:T is a linear transformation on Mn (F) to itself and T(P(Dn, H)) = P(Dn, H)}. In this paper we classify all T in TP(Dn, H) and determine the structure of the group TP(Dn, H) (Theorems 1 to 4). An expository version of the main results is given in Sec. 1, and an example is given at the end of the paper.  相似文献   

20.
We consider the problem of the identification of the time-varying matrix A(t) of a linear m-dimensional differential system y′ = A(t)y. We develop an approximation An,k = ∑nj ? 1cj{Y(tk + τj) Y?1(tk) ? I} to A(tk) for grid points tk = a + kh, k = 0,…, N using specified τj = θjh, 0 < θj < 1, j = 1, …, n, and show that for each tk, the L1 norm of the error matrix is O(hn). We demonstrate an efficient scheme for the evaluation of An,k and treat sample problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号