首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox transmetallation/ligand exchange reactions of lanthanoid metals (Ln), Hg(C6F5)2 and HOAr(OMe) (Ar(OMe) = C6H2-2,6-Bu(t)-4-OMe), in thf (tetrahydrofuran) gave, for Ln = Yb, [Yb(OAr(OMe))2(thf)3], and for Ln = Sm, a mixture of [Sm(II)(OAr(OMe))2(thf)3] and mainly [Sm(III)(Ar(OMe))3(thf)] x thf. X-Ray structure determinations show the divalent complexes to have distorted square-pyramidal stereochemistry with transoid thf and OAr(OMe) ligands in the basal plane. Treatment of [Yb(OAr(OMe))2(thf)3] with diethyl ether or PhMe at room temperature gave [Yb(OAr(OMe))2] or [Yb(OAr(OMe))2] x 0.5 PhMe. For lanthanoids Ln = Nd, Er or Y, the reactions with Hg(C6F5)2 and HOAr(OMe) yielded complex product mixtures, from one of which the novel erbium aryloxide fluoride cage [Er3(OAr(OMe))4(mu2-F)3(mu3-F)2(thf)4] x thf x 0.5 C6H14 was isolated. The cage core consists of a triangle of Er atoms joined to two mu3-fluoride ligands and three further mu2-fluorides bridge adjacent Er atoms. One of the Er atoms is six-coordinate with additionally two OAr(OMe) ligands whilst the other two have one OAr(OMe) and two thf ligands and are seven coordinate. Substitution of Hg(C6F5)2 by Hg(CCPh)2 in the redox transmetallation/ligand exchange reactions gave the new derivatives [Ln(OAr(OMe))3(thf)] x thf (Ln = La, Pr, Nd, Sm, Gd, Ho) in good yields whilst Ln = Yb gave [Yb(OAr(OMe))2(thf)3]. Recrystallisation of [Sm(OAr(OMe))3(thf)] x thf from dme (1,2-dimethoxyethane) yielded [Sm(OAr(OMe))3(dme)]. Structural characterisation of [Ln(OAr(OMe))3(thf)] x thf (Ln = Nd, Ho) and [Sm(OAr(OMe))3(dme)] showed monomeric four-coordinate distorted tetrahedral and five-coordinate distorted square-pyramidal complexes respectively. For the smaller lanthanoids Ln = Y, Er or Lu, reactions with Hg(CCPh)2 and HOAr(OMe) gave the mixed aryloxide/alkynide complexes [Ln(OAr(OMe))2(CCPh)(thf)2]. Oxidation of the divalent ytterbium aryloxide [Yb(OAr(OMe))2(thf)3] by Hg(CCPh)2 in thf gave the analogous [Yb(OAr(OMe))2(CCPh)(thf)2]. The erbium alkynide [Er(OAr(OMe))2(CCPh)(thf)2] x 0.25 C6H14 has distorted square-pyramidal stereochemistry with transoid OAr(OMe) and thf ligands in the basal plane and a rare (for Ln) terminal alkynide ligand in the apical position. The reactive Lu-C bond in the [Lu(OAr(OMe))2(CCPh)(thf)2] complexes could be slowly cleaved by free HOAr(OMe) in hydrocarbon solvents, yielding Lu(OAr(OMe))3 species and fortuitous partial hydrolysis of [Er(Ar(OMe))2(CCPh)(thf)2] gave the dimeric [Er(OAr(OMe))2(mu-OH)2]2.  相似文献   

2.
Reactions of "LnI(x)(SePh)(3-x)" (Ln = Dy, Ho) with elemental S/Se give (THF)14Ln10S6(Se2)6I6. The compounds are composed of a Ln6S6 double cubane core, with two twisted "Ln2(SeSe)3" units condensed onto opposing rectangular sides of the Ln6S6 fragment. This deposition of Ln2Se6 totally encapsulates the two central Ln's with chalcogen atoms (four S and four Se atoms), excluding neutral THF donors or iodides from the two primary coordination spheres. Reactions of Ln(10) clusters with a stronger Lewis base result in fragmentation and, in the case of Ln = Er, the isolation of (py)6Er2(Se2)(S0.8Se0.2)I2, with two Ln(III) ions spanned by E2- and (EE)2- ligands. The related homochalcogen dimers (py)6Ln2(Se2)(Se)Br2 (Ln = Ho, Yb) were prepared to establish that such molecules could be prepared rationally, and to confirm the isolability of E2- ligands coordinated to only two sterically unconstrained Ln ions.  相似文献   

3.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

4.
Lanthanide metals reduce mixtures of azobenzene and PhEEPh (E = Se or Te) in pyridine to give the bimetallic compounds [(py)2Ln(EPh)(PhNNPh)]2 (E = Se, Ln = Ho (1), Er (2), Tm (3), Yb (4); E = Te, Ln = Ho (5), Er (6), Tm (7), Yb (8)). The structures of [(py)2Er(mu-eta 2-eta 2-PhNNPh)(SePh)](2).2py (2) and [(py)2Ho(mu-eta 2-eta 2-PhNNPh)(TePh)](2).2py (5) have been determined by low-temperature single-crystal X-ray diffraction, and the nearly identical unit cell volumes of the remaining compounds indicate they are most likely isomorphous to 2 or 5. In all compounds, the Ln(III) ions are bridged by a pair of mu-eta 2-eta 2-PhNNPh ligands that, from the N-N bond length, have clearly been reduced to dianions. Charge is balanced by the single terminal EPh ligand on each Ln, and the coordination sphere is saturated by two pyridine donors to give seven coordinate metal centers. Thermal decomposition of 5 gives HoTe, 8 gives a mixture of YbN and YbTe, and 1 does not give a crystalline solid-state product. Crystal data (Mo K alpha, 153(2) K) are as follows: 2, monoclinic group P2(1)/n, a = 11.864(3) A, b = 14.188(2) A, c = 17.624(2) A, beta = 91.62(2) degrees, V = 2965(1) A3, Z = 4; 5, triclinic space group P1, a = 10.349(2) A, b = 17.662(4) A, c = 17.730(8) A, alpha = 75.82(3) degrees, beta = 74.11(3) degrees, gamma = 89.45(2) degrees, V = 3016(2) A3, Z = 2.  相似文献   

5.
Sodium and potassium tetrakis(3,5-di-tert-butylpyrazolato)lanthanoidate(III) complexes [M[Ln(tBu(2)pz)(4)]] have been prepared by reaction of anhydrous lanthanoid trihalides with alkali metal 3,5-di-tert-butylpyrazolates at 200-300 degrees C, and a 1,2,4,5-tetramethylbenzene flux for M=K. On extraction with toluene (or occasionally directly from the reaction tube) the following complexes were isolated: [Na(PhMe)[Ln(tBu(2)pz)(4)]] (1 Ln; 1 Ln=1 Tb, 1 Ho, 1 Er, 1 Yb), [K(PhMe)[Ln(tBu(2)pz)(4)]].2 PhMe (2 Ln; 2 Ln=2 La, 2 Sm, 2 Tb, 2 Ho, 2 Yb, 2 Lu), [Na[Ln(tBu(2)pz)(4)]](n) (3 Ln; 3 Ln=3 La, 3 Tb, 3 Ho, 3 Er, 3 Yb), [K[Ln(tBu(2)pz)(4)]](n) (4 Ln; 4 Ln=4 La, 4 Nd, 4 Sm, 4 Tb, 4 Ho, 4 Er, 4 Yb, 4 Lu), with the last two classes generally being obtained by loss of toluene from 1 Ln or 2 Ln, and [Na(tBu(2)pzH)[Ln(tBu(2)pz)(4)]].PhMe (5 Ln; 5 Ln=5 Nd, 5 Er, 5 Yb). Extraction with 1,2-dimethoxyethane (DME) after isolation of 2 Ho yielded [K(dme)[Ho(tBu(2)pz)(4)]] (6 Ho). X-ray crystal structures of 1 Ln (=1 Tb, 1 Ho; P2(1)/c), 2 Ln (=2 La, 2 Sm, 2 Tb, 2 Yb, 2 Lu; Pnma), 3,4 Ln (=3 La, 3 Er, 4 Sm; P2(1)/m), and 5 Ln (=5 Nd, 5 Er, and 5 Yb; P1) show each group to be isomorphous regardless of the size of the Ln(3+) ion. All complexes contain eight-coordinate [Ln(eta(2)-tBu(2)pz)(4)] units. These are further linked to the alkali metal by bridging through two (1,2,5 Ln) or three (3,4 Ln) tBu(2)pz groups which show striking coordination versatility. Sodium is coordinated by an eta(4)-PhMe, a micro-eta(2):eta(2)-tBu(2)pz, and a micro-eta(4)(Na):eta(2)(Ln)-tBu(2)pz ligand in 1 Ln, and by one eta(1)-tBu(2)pzH and two micro-eta(3)(Na):eta(2)(Ln) ligands in 5 Ln. By contrast, potassium has one eta(6)-PhMe and two micro-eta(5)(K):eta(2)(Ln) ligands in 2 Ln. Classes 3,4 Ln form polymeric chains with the alkali metal bonded by two micro-eta(3)(NNC-M):eta(2)(Ln)-tBu(2)pz ligands within [MLn(tBu(2)pz)(4)] units which are joined together by eta(1)(C)-tBu(2)pz-Na, K linkages.  相似文献   

6.
Zhang X  Wang D  Dou J  Yan S  Yao X  Jiang J 《Inorganic chemistry》2006,45(26):10629-10635
A series of 10 novel polyoxometalate (W/Mo) compounds connected via a trivalent lanthanide cation bridge, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}.n(H2O) (Ln = La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu; M = W or W/Mo) (1-10), were designed and synthesized on the basis of the abduction of Al3+ in aqueous solution. X-ray diffraction analyses reveal that the structures of complexes 1-10 are three-dimensional frameworks assembled from the arrangement of H2M12O42(10-) (named paradodecmetalate-B) and Ln(H2O)53+ with two planes, which are constructed via the unification of H2M12O42(10-) and Ln(H2O)53+, along the [100] and [001] directions. Magnetic measurements reveal the paramagnetic properties and a strong ferromagnetic coupling between the two nearest-neighboring lanthanide cations, Ln3+ (Ln = Dy, Er), within the circle for compounds 2 and 4-9.  相似文献   

7.
Lanthanide (Ln) oxides and cadmium (Cd) salts as sources of metals provided the first series of luminescent Ln-Cd-organic frameworks, [LnCd(imdc)(SO4)(H2O)3].0.5H2O (Ln = Tb, Eu, Dy, Gd, Er, Yb, Y, Nd, Pr; H3imdc = 4,5-imidazoledicarboxylic acid), in which the Ln atoms are linked by imdc ligands with skew coordination orientation, resulting in novel hetero-metallic-organic frameworks with left-/right-handed helical tubes (L1/R1) and channels (L2/R2) along the b axis.  相似文献   

8.
"Er(SePh)(2.5)I(0.5)" reacts with elemental S to give (THF)10Er6S6I6, a double cubane cluster with one face of the Er4S4 cube capped by an additional Er2S2. Reactions with a mixture of elemental S/Se results in the formation of (THF)14Er10S6(Se2)6I6, a cluster composed of an Er6S6 double cubane core, with two "Er2(Se2)3" units condensed onto opposing rectangular sides of the Er6S6 fragment. This deposition of Er2Se6 totally encapsulates the two central Er with chalcogen atoms (4 S, 4 Se) and excludes neutral THF donors or iodides from the two primary coordination spheres. The Er10 compound is the first lanthanide cluster to contain internal, chalcogen encapsulated Ln. This cluster shows strong fluorescence at 1544 nm with a measured decay time of 3 ms and an estimated quantum efficiency of 78%, which is comparable to Er doped solid-state materials. The unusual fluorescence spectral properties of (THF)14Er10S6Se12I6 are unprecedented for a molecular Er complex and are attributed to the low phonon energy host environment provided by the I-, S(2-), and Se2(2-) ligands.  相似文献   

9.
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.  相似文献   

10.
The chiral phosphanylamides {N(R-CHMePh)(PPh(2))}(-) and {N(S-CHMePh)(PPh(2))}(-) were introduced into rare earth chemistry. Transmetalation of the enantiomeric pure lithium compounds Li{N(R-CHMePh)(PPh(2))} (1a) and Li{N(S-CHMePh)(PPh(2))} (1b) with lanthanide bis(phosphinimino)methanide dichloride [{CH(PPh(2)NSiMe(3))(2)}LnCl(2)](2) in a 2:1 molar ratio in THF afforded the enantiomeric pure complexes [{CH(PPh(2)NSiMe(3))(2)}Ln(Cl){eta(2)-N(R-CHMePh)(PPh(2))}] (Ln = Er (2a), Yb (3a), Lu (4a)) and [{CH(PPh(2)NSiMe(3))(2)}Ln(Cl){eta(2)-N(S-CHMePh)(PPh(2))}] (Ln = Er (2b), Yb (3b), Lu (4b)). The solid-state structures of 2a and 3a,b were established by single-crystal X-ray diffraction. Attempts to synthesize compounds 3 in a one-pot reaction starting from K{CH(PPh(2)NSiMe(3))(2)}, YbCl(3), and 1 resulted in the lithium chloride incorporated complex [{(Me(3)SiNPPh(2))(2)CH}Yb(mu-Cl)(2)LiCl(THF)(2)] (5). In an alternative approach to give chiral rare earth compounds in a one-pot reaction 1a or 1b was reacted with LnCl(3) and K(2)C(8)H(8) to give the enantiomeric pure cyclooctatetraene compounds [{eta(2)-N(R-CHMePh)(PPh(2))}Ln(eta(8)-C(8)H(8))] (Ln = Y (6a), Er (7a), Yb (8)) and [{eta(2)-N(S-CHMePh)(PPh(2))}Ln(eta(8)-C(8)H(8))] (Ln = Y (6b), Er (7b)). The structures of 6a,b, 7a, and 8 were confirmed by single-crystal X-ray diffraction in the solid state.  相似文献   

11.
Zhang C  Liu R  Zhang J  Chen Z  Zhou X 《Inorganic chemistry》2006,45(15):5867-5877
The reactivity of [Cp(2)Ln(mu-OH)(THF)]2 (Ln = Y (1), Er (2), Yb (3)) toward PhEtCCO, PhNCO, Cp3Ln, [Cp2Ln(mu-CH3)]2, and the LiCl adduct of Cp2Ln(n)Bu(THF)x was examined. In all cases, OH-centered reactivity is observed: complexes 1-3 react with PhEtCCO to form the O-H addition products [Cp2Ln(mu-eta1:eta2-O2CCHEtPh)]2 (Ln = Yb (5), Er (6), Y (7), respectively, for 1-3), whereas treatment of 1 with PhNCO affords the addition/CpH-elimination/rearrangement product [{Cp2Y(THF)}2(mu-eta2:eta2-O2CNPh)] (8), which contains an unusual PhNCO(2) dianionic ligand. Analogous compound [Cp2Ln(THF)]2(mu-eta2:eta2-O2CNPh) (Ln = Yb (9), Er (10)) and 8 can be obtained in a higher yield by treatment of [Cp2Ln(mu-OH)(THF)]2 with PhNCO followed by reaction with the corresponding Cp3Ln. However, attempts to prepare the corresponding heterobimetallic complex by reacting stoichiometric amounts of [Cp2Y(mu-OH)(THF)]2 with PhNCO followed by treating it with Cp3Yb are unsuccessful. Instead, only rearrangement products 8 and 9 are obtained. Furthermore, the reaction of 3 with [Cp2Yb(mu-CH3)]2 or Cp3Yb forms oxo-bridged compound [Cp2Yb(THF)]2(mu-O) (11), whereas the reaction of [Cp2ErCl]2 with Li(n)Bu followed by treatment with 2 affords unexpected mu-oxo lanthanocene cluster (Cp2Er)3(mu-OH)(mu3-O)(mu-Cl)Li(THF)4 (12). In contrast to 1 and 2, 3 shows a strong tendency to undergo the intermolecular elimination of CpH at room temperature, giving trinuclear species [Cp2Yb(mu-OH)]2[CpYb(THF)](mu3-O) (4). The single-crystal X-ray diffraction structures of 1, 2, and 4-12 are described. All the results offer an interesting contrast to transition- and main-metal hydroxide complexes.  相似文献   

12.
The compounds Cp2Ln[N(QPPh2)2] (Ln = La (1), Gd (2), Er (3), or Yb (4) for Q = Se, Ln = Yb (5) for Q = S) have been synthesized from the corresponding rare-earth tris(cyclopentadienyl) compound and H[N(QPPh2)2]. The structures of compounds 1, 2, 3, and 5, as determined by X-ray crystallography, consist of a Cp2Ln fragment, coordinated eta 3 through two chalcogen atoms and an N atom of the imidodiphosphinochalcogenido ligand [N(QPPh2)2]-. In compound 4, the Cp2Yb moiety is coordinated eta 2 through the two Se atoms of the [N(SePPh2)2]-ligand. 31P and 77Se (for 1) NMR spectroscopies lend insight into the solution nature of these species. Crystal data: 1, C34H30LaNP2Se2, triclinic, P1, a = 9.7959(10) A, b = 12.4134(13) A, c = 13.9077(14) A, alpha = 88.106(2) degrees, beta = 88.327(2) degrees, gamma = 68.481(2) degrees, V = 1572.2(3) A3, T = 153 K, Z = 2, and R1(F) = 0.0257 for the 5947 reflections with I > .2 sigma(I); 2, C34H30GdNP2Se2, triclinic, P1, a = 9.7130(14) A, b = 12.2659(17) A, c = 13.953(2) A, alpha = 88.062(2) degrees, beta = 87.613(2) degrees, gamma = 69.041(2) degrees, V = 1550.7(4) A3, T = 153 K, Z = 2, and R1(F) = 0.0323 for the 5064 reflections with I > 2 sigma(I); 3, C34H30ErNP2Se2, triclinic, P1, a = 9.704(2) A, b = 12.222(3) A, c = 13.980(4) A, alpha = 88.230(4) degrees, beta = 87.487(4) degees, gamma = 69.107(4) degrees, V = 1547.4(7) A3, T = 153 K, Z = 2, and R1(F) = 0.0278 for the 6377 reflections with I > 2 sigma(I); 4, C34H30NP2Se2Yb.C4H8O, triclinic, P1, a = 12.087(4) A, b = 12.429(4) A, c = 23.990(7) A, alpha = 89.406(5) degrees, beta = 86.368(5) degrees, gamma = 81.664(5) degrees, V = 3558.8(18) A3, T = 153 K, Z = 4, and R1(F) = 0.0321 for the 11,883 reflections with I > 2 sigma(I); and 5, C34H30NP2S2Yb, monoclinic, P21/n, a = 13.8799(18) A, b = 12.6747(16) A, c = 17.180(2) A, beta = 91.102(3) degrees, V = 3021.8(7) A3, T = 153 K, Z = 4, and R1(F) = 0.0218 for the 6698 reflections with I > 2 sigma(I).  相似文献   

13.
Ln(SePh)(3) (Ln = Ce, Pr, Nd), prepared by reduction of PhSeSePh with elemental Ln and Hg catalyst, reacts with excess elemental Se to give (py)(11)Ln(7)Se(21)HgSePh, an ellipsoidal polyselenide cluster. The molecular structure contains two square arrays of eight- or nine-coordinate Ln fused at one edge to form a V shape that is also capped on the concave side by a centrally located nine-coordinate (Se(3))pyLn(Se(3)) and on the convex side by a 2-fold disordered SeHgSePh. The central Ln coordinates to selenido, triselenido, and pyridine ligands, while all other Ln coordinate to selenido, diselenido, triselenido, and pyridine ligands. Thermal treatment of the Pr compound at 650 °C gave Pr(2)Se(3) and Pr(3)Se(4). NIR emission studies of the Nd compound show four transitions from the excited-state (4)F(3/2) ion to (4)I(9/2), (4)I(11/2), (4)I(13/2), and (4)I(15/2) states. The (4)F(3/2) ion to (4)I(11/2) transition (1075 nm emission) exhibited 43% quantum efficiency. This is the highest quantum efficiency reported for a 'molecular' Nd compound and leads a group of selenide-based clusters that has shown extraordinary quantum efficiency. In terms of efficiency and concentration, these compounds compare favorably with solid-state materials.  相似文献   

14.
采用分步组装策略,利用3-位和4-位吡啶端基化的三脚配体,合成了分立的单核Ln(Ln=Tb/Sm/Yb)配合物,进一步通过吡啶端基的配位扩展,分别组装得到不同拓扑的Ln-M(M=Ag或Cd)三维金属-有机框架(MOF)结构。异核MOF保留了Ln配位中心的特征可见至近红外发光,并因配体能级结构和与稀土离子间的能量传递效率的改变,对配合物的发光性能产生调控。其中配合物2-Yb-Ag中,Yb的近红外发光与单核稀土配合物相比明显增强,荧光寿命从单核的4.3μs增加到6.7μs,而4-Tb-Cd则产生了配体发光与稀土中心发光的组合模式,其中来自Tb中心的荧光寿命从相应单核配合物中的2.91 ms缩短至0.62 ms。  相似文献   

15.
Mixtures of Ln(SC(6)F(5))(3) and Ln(EPh)(3) (E = S, Se) react with elemental E to give chalcogen-rich clusters with fluorinated thiolate ancillary ligands. The structures of both (THF)(6)Yb(4)S(SS)(4)(SC(6)F(5))(2) and (THF)(6)Yb(4)Se(SeSe)(4)(SC(6)F(5))(2) have been established by low-temperature single-crystal X-ray diffraction. Both compounds contain a square array of Yb(III) ions connected by a central mu(4)-E(2-) ligand. The edges of the square Yb(4) array are bridged by four mu(2)(EE) ligands, and two terminal SC(6)F(5) are on the same side of the Ln(4) plane that is capped by the mu(4)-E(2-) ion. Redox inactive (THF)(6)Tm(4)Se(SeSe)(4)(SC(6)F(5))(2) was also prepared to establish the extension of this chemistry to the redox inactive Ln. These clusters are soluble in toluene.  相似文献   

16.
The near-infrared (NIR) luminescent lanthanide ions, such as Er(III), Nd(III), and Yb(III), have been paid much attention for the potential use in the optical communications or laser systems. For the first time, the NIR-luminescent Ln(dbm)(3)phen complexes have been covalently bonded to the ordered mesoporous materials MCM-41 and SBA-15 via a functionalized phen group phen-Si (phen-Si = 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline; dbm = dibenzoylmethanate; Ln = Er, Nd, Yb). The synthesis parameters X = 12 and Y = 6 h (X denotes Ln(dbm)(3)(H(2)O)(2)/phen-MCM-41 molar ratio or Ln(dbm)(3)(H(2)O)(2)/phen-SBA-15 molar ratio and Y is the reaction time for the ligand exchange reaction; phen-MCM-41 and phen-SBA-15 are phen-functionalized MCM-41 and SBA-15 mesoporous materials, respectively) were selected through a systematic and comparative study. The derivative materials, denoted as Ln(dbm)(3)phen-MCM-41 and Ln(dbm)(3)phen-SBA-15 (Ln = Er, Nd, Yb), were characterized by powder X-ray diffraction, nitrogen adsorption/desorption, Fourier transform infrared (FT-IR), elemental analysis, and fluorescence spectra. Upon excitation of the ligands absorption bands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide ions through the intramolecular energy transfer from the ligands to the lanthanide ions. The excellent NIR-luminescent properties enable these mesoporous materials to have potential uses in optical amplifiers (operating at 1.3 or 1.5 mum), laser systems, or medical diagnostics. In addition, the Ln(dbm)(3)phen-SBA-15 materials show an overall increase in relative luminescent intensity and lifetime compared to the Ln(dbm)(3)phen-MCM-41 materials, which was explained by the comparison of the lanthanide ion content and the pore structures of the two kinds of mesoporous materials in detail.  相似文献   

17.
CsLnCdSe(3) (Ln = Ce, Pr, Sm, Gd, Tb, Dy, Y) and CsLnHgSe(3) (Ln = La, Ce, Pr, Nd, Sm, Gd, Y) have been synthesized at 1123 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm and are group X extensions of the previously characterized Zn compounds. The structure is composed of two-dimensional [LnMSe(3)] layers that stack perpendicular to [010] and are separated by layers of face- and edge-sharing CsSe(8) bicapped trigonal prisms. Because there are no Se-Se bonds in the structure of CsLnMSe(3) (M = Zn, Cd, Hg), the formal oxidation states of Cs/Ln/M/Se are 1+/3+/2+/2-. CsSmHgSe(3) does not adhere to the Curie-Weiss law, whereas CsCeHgSe(3) and CsGdHgSe(3) are Curie-Weiss paramagnets with micro (eff) values of 2.77 and 7.90 micro (B), corresponding well with the theoretical values of 2.54 and 7.94 micro (B) for Ce(3+) and Gd(3+), respectively. Single-crystal optical absorption measurements were performed with polarized light perpendicular to the (010) and (001) crystal faces of these materials. The band gaps of the (010) crystal faces range from 1.94 eV (CsCeHgSe(3)) to 2.58 eV (CsYCdSe(3)) whereas those of the (001) crystal faces span the range 2.37 eV (CsSmHgSe(3)) to 2.54 eV (CsYCdSe(3) and CsYHgSe(3)). The largest band gap variation between crystal faces is 0.06 eV for CsYCdSe(3). Theoretical calculations for CsYMSe(3) indicate that these materials are direct band gap semiconductors whose colors and optical band gaps are dependent upon the orbitals of Y, M, and Se.  相似文献   

18.
本文研究了二(2-乙基己基)膦酸(H[DEHP])的正辛烷溶液从盐酸介质中萃取钪(Ⅲ)、钇(Ⅲ)、镧系离子(Ⅲ)和铁(Ⅲ)的平衡规律。结果表明,H[DEHP]对上述离子的萃取次序是Sc3+>Fe3+>Lu3+>Yb3+>Er3+>Y3+>Ho3+。讨论了Sc(Ⅲ)与Fe(Ⅲ)、Y(Ⅲ)、Ln(Ⅲ)(镧系离子)以及Fe(Ⅲ)与重镧系离子(Ⅲ)分离的可能性,并与HEH[EHP]萃取上述离子的性能进行了比较。借助IR、NMR和斜率法,饱和法研究了低酸度下H[DEHP]萃取Sc(Ⅲ)、Y(Ⅲ)和Ln(Ⅲ)的平衡反应,计算了浓度平衡常数和萃取反应的热力学函数。  相似文献   

19.
于晓燕  金国新  翁林红 《中国化学》2002,20(11):1256-1262
IntroductionUptodateconsiderableattentionhasbeendevotedtothemetalcomplexeswithchalcogenolateligands .1,2Recentlytransitionmetalcomplexescontainingachelating1,2 dicarba closo dodecabarane 1,2 dichalcogenolatelig ands3 10 haveattractedagreatdealofinterestduetot…  相似文献   

20.
CsLnMnSe(3) (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) and AYbZnQ(3) (A = Rb, Cs; Q = S, Se, Te) have been synthesized from solid-state reactions at temperatures in excess 1173 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm. The structure is composed of LnQ(6) octahedra and MQ(4) tetrahedra that share edges to form [LnMQ(3)] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing AQ(8) bicapped trigonal prisms. There are no Q-Q bonds in the structure of the ALnMQ(3) compounds so the formal oxidation states of A/Ln/M/Q are 1+/3+/2+/2-. The CsLnMnSe(3) materials, with the exception of CsYbMnSe(3), are Curie-Weiss paramagnets between 5 and 300 K. The magnetic susceptibility data for CsYbZnS(3), RbYbZnSe(3), and CsYbMSe(3) (M = Mn, Zn) show a weak cusp at approximately 10 K and pronounced differences between field-cooled and zero-field-cooled data. However, CsYbZnSe(3) is not an antiferromagnet because a neutron diffraction study indicates that CsYbZnSe(3) shows neither long-range magnetic ordering nor a phase change between 4 and 295 K. Nor is the compound a spin glass because the transition at 10 K does not depend on ac frequency. The optical band gaps of the (010) and (001) crystal faces for CsYbMnSe(3) are 1.60 and 1.59 eV, respectively; the optical band of the (010) crystal faces for CsYbZnS(3) and RbYbZnSe(3) are 2.61 and 2.07 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号