首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallization of amorphous Ge films has been studied as a function of annealing temperature between 400 and 700°C by in situ transmission electron microscopy (TEM). It is found that crystallization does not occur until the annealing temperature reaches 650°C, which is nearly 250°C higher than the crystallization temperature in previous reports. The high crystallization temperature and average crystal size obtained by in situ TEM are in agreement with those from Raman spectroscopy and X-ray diffraction measurement. The kinetics analysis indicates that homogeneous nucleation is the dominant crystallization mode and the activation energy is up to about 3.1 eV.  相似文献   

2.
Low-density materials, commercially available hydrogensilsesquioxane (HSQ) offer a low dielectric constant. HSQ films can be obtained by spin on deposition (SOD). In this work, low-dielectric-constant HSQ films are prepared by using D5 (decamethylcyclopentasiloxane) as sacrificiaJ porous materials. The dielectric constant of silica films significantly changes from 3.0 to 2.4. We report the structural aspects of the films in relation to their composition after annealed at 300℃, 400℃, and 500℃ for 1.5h in nitrogen ambient and annealed at 400℃ for 1.5h in vacuum. Si-OH appears after annealed at 400℃ for 1.5h in vacuum. The results indicate that the proper condition is in nitrogen ambient. Intensity of the Sill peak increases with the increasing temperature. Fourier transform infrared spectroscopy is used to identify the network structure and cage structure of Si-O-Si bonds and other possible bonds. Dielectric constant k is significantly lowered by annealing at 350℃ for 1.5h in nitrogen ambient. The I-V and C-V measurements are used to determine the dielectric constant, the electric resistivity and the breakdown electric field.  相似文献   

3.
We investigated the effect of rapid thermal annealing (RTA) on the photoluminescence (PL) and electroluminescence of the In0.53Ga0.47As/In0.53(Ga0.6Al0.4)0.47As multiple quantum well (MQW) laser structure with InGaAlAs barrier layers provided by the digital-alloy technique. The SiO2- (Si3N4-) capped samples followed by the RTA exhibited a significant improvement of PL intensity without any appreciable shifts in PL peak energy for settings of up to 750 °C (800 °C) for 45 s. This improvement is attributed to the annealing of nonradiative defects in InAlAs layers of digital-alloy InGaAlAs and partially those near the heterointerfaces of the digital-alloy layers. The InGaAs/InGaAlAs MQW laser diodes fabricated on the samples annealed at 850 °C show a hugely improved lasing performance. Received: 2 September 2002 / Accepted: 3 September 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +82-62/970-2204, E-mail: ytlee@kjist.ac.kr  相似文献   

4.
This paper reports the synthesis and optical properties of nanocrystalline ZnO powders with crystallite sizes of 32.5 (±1.4)–43.4 (±0.4) nm prepared by a direct thermal decomposition of zinc acetate at the temperatures of 400, 500, 600, and 700°C for 4 h. The structure of the prepared samples was studied by XRD and FTIR spectroscopy, confirming the formation of wurtzite structure. The morphology of the samples revealed by SEM was affected by the thermal decomposition temperature, causing the formations of both nanoparticles and nanorods with different size and shape in the samples. The synthesized powders exhibited the UV absorption below 400 nm (3.10 eV) with a well defined absorption peak at around 285 nm (4.35 eV). The estimated direct bandgaps were obtained to be 3.19, 3.16, 3.14, and 3.13 eV for the ZnO samples thermally decomposed at 400, 500, 600, and 700°C, respectively. All the samples exhibited room-temperature photoluminescence (PL) showing a strong UV emission band at ∼395 nm (3.14 eV), a weak blue band at ∼420 nm (2.95 eV), a blue–green band at ∼485 nm (2.56 eV), and a very weak green band at ∼529 nm (2.35 eV). The mechanisms responsible for photoluminescence of the samples are discussed.  相似文献   

5.
Ultralong ZnO nanowires were successfully prepared on a large scale by a microwave-assisted aqueous route without using any surfactant or template at relatively low temperature of 120°C. The obtained nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectrum (EDX). The growth mechanism and photoluminescence of the one-dimensional nanostructure, and photovoltaic performances for dye-sensitized solar cell (DSSC) of the nanowires were discussed in detail.  相似文献   

6.
Co nanoparticles embedded in a BaTiO3 matrix, namely Co-BaTiO3 nano-composite films are grown on Mg(100) single crystal substrates by the pulsed laser deposition (PLD) method at 650℃. Optical properties of the CoBaTiO3 nano-composite films are examined by absorption spectra (AS) and photoluminescence (PL) spectra. The results indicate that the concentration of Co nano-particles strongly influences the electron transition of the Co BaTiO3 nano-composite films. The PL emission band ranging from 1.9 to 2.2eV is reported. The AS and PL spectra suggest that the band gap is in the range of 3.28-3.7eV.  相似文献   

7.
NiFe2O4 nanoparticles have been synthesized by co-precipitation method at 145°C in N2 atmosphere using ethylene glycol as solvent and capping agent. This gives the promising synthesis route for nanoparticles at low temperature. The as-synthesized NiFe2O4 is subsequently heated at 400°C, 500°C, 700°C and 800°C. Crystallite size increases with the heat treatment temperature. The heat treatment temperature has direct effect on the electron paramagnetic resonance and intrinsic magnetic properties. The room temperature Mössbauer spectrum of the 800°C heated sample shows the two sextets pattern indicating that the sample is ferrimagnetic and Fe3?+? ions occupy both tetrahedral and octahedral sites of spinel structure.  相似文献   

8.
The chemical states of GeTe thin film are investigated using high-resolution X-ray photoelectron spectroscopy (HRXPS) with synchrotron radiation, during amorphous to crystalline structural phase transition. As the temperature increases from 250 to 400 °C, we observe the rock-salt crystalline structure and phase with X-ray diffraction (XRD) and transmission electron microscopy (TEM). Spin-orbit splitting of the Ge 3d core-level spectrum clearly appears after annealing at 400 °C for 5 min. However, the binding energy of the Ge 3d5/2 core-level peak of 29.8 eV does not change in the amorphous to crystalline structural phase transition. In the case of the Te 4d core-level, change in binding energy and peak shapes is also negligible. We assume that the Te atom is fixed at a site between the amorphous and crystalline phases. Although the structural environment of the Ge atoms changes during the structural phase transition, the chemical environment does not.  相似文献   

9.
CdS nanocrystallites formed in ordered fatty acid LB multilayers exhibited strong surface states emission ∼550 nm and weak excitonic emission ∼400 nm. Treatment with aqueous CdCl2 resulted in the suppression of surface states emission and enhancement of the blue excitonic emission. Subsequent annealing in air at 200°C caused an order of magnitude enhancement of excitonic emission. The growth of nanocrystallites during annealing as seen from the red-shift of excitonic absorption and emission is suppressed by the CdCl2 treatment. The hindered growth of nanocrystallites, the significant enhancement of excitonic emission from CdS, and the suppression of surface states emission are attributed to surface passivation of CdS nanocrystallites by surface oxide formation.  相似文献   

10.
The effects of Si nanocluster (Si-nc) size on the energy transfer rate to Er ions were investigated through studies made on appropriate configurations of mutilayers (MLs) consisting in about 20 periods of Er-doped Si-rich SiO2/SiO2. These MLs were deposited by reactive magnetron sputtering at 650 °C and subsequently annealed at 900 °C. For Si-rich layer thickness or Si-nc larger than about 4 nm, the sensitizing effect of Si-nc towards rare earth ions is highly lowered because of the weak confinement of carriers and the loss of resonant excitation of Er through the upper levels (second, third, ...). The latter is liable to prevent the energy back transfer process, while the weak confinement reduces strongly the probability of no phonon radiative recombination necessary for the energy transfer from Si-nc to Er ions.  相似文献   

11.
A periodic array of Ga oxide islands was obtained by annealing the highly ordered Ga nano-droplets on GaAs surface at 400°C under an oxygen atmosphere for 7 hours. These Ga oxides are a mixture of α-Ga2O3 and β-Ga2O3 confirmed by Raman spectroscopy study. Enhanced optical transmission of GaAs with such ordered Ga oxide nano-islands was obtained. Both dielectric and dimensional confinement effects were considered in analysis of the electromagnetic characteristics of the nanostructured materials. Finite-difference time-domain method was used to numerically study the light transmission through the patterned Ga oxide on GaAs surface. Based on the calculated results, the light transmission enhancement is attributed to the formation of the ordered nano Ga oxides.  相似文献   

12.
Thermally stabilized channel waveguides with Bragg gratings were fabricated by the space-selective precipitation technique of crystalline Ge nanoparticles using KrF excimer laser irradiation. The periodic structures consisting of Ge nanoparticles were formed in Ge-B-SiO2 thin glass films after exposure to an interference pattern of the laser followed by annealing at 600 °C. The channel waveguides with the periodic structures were fabricated by the cladding of the patterned Cr layers on the films. The diffraction peak for the TE-like mode of 11.8 dB depth was observed clearly at a wavelength of 1526.4 nm, indicating that the periodic structure also served as the optical band-pass filter in optical communication wavelength. The spectral shape, diffraction efficiency, and diffraction wavelength remained unchanged even after annealing at 400 °C. Furthermore, a low temperature dependence of the diffraction wavelength - as low as 8.1 pm/°C - was achieved. The diffraction efficiency was further enhanced after subsequent annealing at 600 °C. The space-selective precipitation technique is expected to be useful for the fabrication of highly reliable optical filters or durable sensing devices operating at high temperature.  相似文献   

13.
High-quality, lattice-matched InGaP on exact (100) GaAs was successfully grown by molecular beam epitaxy with a GaP decomposition source. The ordering parameter (η) of the InGaP is investigated as a function of the growth temperature. η is as low as 0.22 and almost insensitive to the growth temperature below 460 °C. It increases abruptly around 475 °C and has a maximum value of 0.35 at ≈490 °C. Double crystal X-ray diffraction and a low-temperature photoluminescence spectrum reveal that the present growth method is robust and provides better quality InGaP compared to other state-of-the-art growth technologies. Received: 20 November 2000 / Accepted: 27 January 2001 / Published online: 21 March 2001  相似文献   

14.
Cylindrical rock salt single crystals have been plastically deformed by compression in the [001]-direction at room temperature to shear stresser τ E of 200 N/cm2 and 350 N/cm2, respectively. Isochronal annealing experiments reveal, that workhardening recovers at >300° C. The characteristic annealing temperature was found between 400° C and 450° C. At 600° C the residual workhardening still amounts to 15–20%. The isochronal reduction of screw dislocation density between 400 and 600° C shows qualitatively the same behaviour as recovery of workhardening. From the isothermal annealing curves of the samples deformed to 200 N/cm2 the activation energy for recovery of workhardening was found to be about 1 eV. Assuming that the kinetics of recovery can be explained by processes distributed in activation energy, an approximate spectrum of activation energies (with a maximum arising at ~1 eV) has been evaluated. The results show that recovery of workhardening after low deformation (stage I of the stress strain curve) is mainly due to the dislocations.  相似文献   

15.
M. Ö  ztas  M. Bedir  Z. Ö  ztürk  D. Korkmaz  S. Sur 《中国物理快报》2006,23(6):1610-1012
In2S3 nanocrystalline films are prepared on glass substrates by the spray pyrolysis technique using indium chloride and thiourea as precursors. The deposition is carried out at 350°C on glass substrates. The films are then annealed for two hour at 200, 400, 600, and 800°C in O2 flow. This process allows the transformation of nanocrystal In2O3 films from In2S3 films and the reaction completes at 600°C. These results indicate that the In2O3 film prepared by this simple thermal oxidation method is a promising candidate for electro-optical and photovoltaic devices.  相似文献   

16.
Thermal stability of nanocrystalline Cu prepared by compacting nanoparticles (mean grain size about 50?nm) under high pressure has been studied by means of positron annihilation lifetime spectroscopy and X-ray diffraction. A gradual increase of mean grain size in the sample is observed with an increase in ageing time at 180°C, indicating an increase of volume fraction of the ordered regions. Furthermore, during the ageing, the increase in average size of the vacancy clusters in grain boundaries is confirmed by the positron lifetime results. The recrystallization is observed at the temperature of about 180°C, and becomes significant above 650°C. Three annealing stages, which are at the intervals 180–400°C, 400–650°C and 650–900°C have been characterized by positron average lifetime. The average volume of the defects almost remains constant in the interval 400–650°C but becomes considerably smaller in the interval 650–900°C.  相似文献   

17.
We report on metal (Cr, Ni, or Pd)-induced solid-phase crystallization (MISPC) of plasma-enhanced chemical-vapor-deposited hydrogenated amorphous silicon at annealing temperatures ≤600 °C. MISPC is found to significantly reduce the thermal budget of crystallization at annealing temperatures as low as ∼400 °C. The lowest achievable annealing temperature is found to depend on the metal type. The metal type is also found to influence grain size and the conductivity of the polycrystalline silicon. Received: 21 June 1999 / Accepted: 20 October 1999 / Published online: 23 February 2000  相似文献   

18.
The electroluminescence from single‐walled carbon nanotube field effect transistors is spectrally resolved, and shows two distinct modes of light emission. The vast majority of nanotubes have spectrally broad emission consistent with the spectrum of blackbody radiation. Much more rarely, superposed on the broad emission is a single narrow (<50 meV) peak which is consistent with expectation for electron–hole recombination. The narrow emission is strong even at lower biases and in general has greater peak intensity than the broadband emission. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Kuna Lakshun Naidu 《哲学杂志》2013,93(30):3431-3444
Chromium/silicon bilayers are deposited by sequential electron beam evaporation on quartz substrates. The bilayers consisting of Cr and Si layers of 50 and 400 nm thicknesses, respectively, are subjected to post-deposition annealing at temperatures from 200 to 700 °C. The thermal annealing results in the interdiffusion between Cr and Si, as evidenced by cross-section scanning electron micrographs and the line profiles obtained from energy-dispersive X-ray spectroscopy. It is inferred from the compositional line profiles that the films are a combination of silicon-rich oxide, chromium oxide and unreacted Cr up to 500 °C. Chromium disilicide forms at temperatures greater than 500 °C with decrease in chromium oxide content. The refractive index value and extinction coefficient values are 2.1 and 0.12 in the as-deposited case which increase to 3.5 and 0.24 at 400 °C. These values decrease to 2.1 and 0.12 at 500 °C. At the same temperatures, the band gap values are 2.21, 2.40 and 2.28, respectively. Thus, the refractive index, absorption coefficient and the optical band gap of the films peak at an annealing temperature of 400 °C and decrease thereafter. Significantly, this is accompanied by increase in Urbach energy which is an indication of increase in disorder in the system. There is decrease in Urbach energy as well as the optical constants at temperatures >400 °C.  相似文献   

20.
Nitrogen ions were implanted in GaAs1−xPx (x=0.4; 0.65) at room temperature at various doses from 5×1012 cm−2 to 5×1015 cm−2 and annealed at temperatures from 600°C up to 950°C using a sputtered SiO2 encapsulation to investigate the possibility of creating isoelectronic traps by ion implantation. Photoluminescence and channeling measurements were performed to characterize implanted layers. The effects of damage induced by optically inactive neon ion implantation on photoluminescence spectrum were also investigated. By channeling measurements it was found that damage induced by nitrogen implantation is removed by annealing at 800°C. A nitrogen induced emission intensity comparable to the intensity of band gap emission for unimplanted material was observed for implanted GaAs0.6P0.4 after annealing at 850°C, while an enhancement of the emission intensity by a factor of 180 as compared with an unimplanted material was observed for implanted GaAs0.35P0.65 after annealing at 950°C. An anomalous diffusion of nitrogen atoms was found for implanted GaAs0.6P0.4 after annealing at and above 900°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号