首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coustically induced optical second harmonic generation (SHG) and two‐photon absorption (TPA) in ferroelectric Pb4.7Ba0.3Ge3O11 crystals have been found. We have found that with increasing acoustical power, the SHG for YAG:Nd laser light (λ=1.06 μm) increases and achieves its maximum value at acoustical power density about 1.75 W/cm2. The evaluated SHG values were 23 % less comparing with χ222 tensor of the KDP single crystals. With decreasing temperature, the acoustically induced SHG signals trongly increases below 29 K. The maximal acoustically induced SHG has been observed at acoustical frequencies lying with in the ranges 12‐17 kHz, 22‐23 kHz and above 26 kHz. This behavior reflects nonlinear superposition of the nonlinear optical susceptibilities stimulated by externallyinduced electron‐phonon anharm onicity. We have observed substantial increase of the TPA (for the acoustical power W=1.8 W/cm2) at high hydrostatic pressures (about 16 GPa) and low temperatures (below 16 K). This one confirms complicated influence of the electron‐phonon interactions in the ferroelectricson the observed nonline aroptical dependences.  相似文献   

2.
The thermoelectric power in In1‐xGaxAs (x = 0,01;0,04) solid solutions and InAs crystals irradiated with fast electrons by the energy of 6 MeV and dose of 1016‐ 2 x 1017 el/cm‐2 on the interval 80‐400 K have been investigated. It is revealed that in the all crystals the value of the thermoelectric power is decreased under irradiation that resulted from the growth of the free electron concentration to form radiation induced defects of the donor type. It has been determined that in the initial InAs after irradiation, the charge carriers scatter on optical phonons and in In1‐xGaxAs solid solutions they do on optical phonons and ionized impurities. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Photoinduced nonlinear optical effects in ZnS nanocrystallites incorporated within the photopolymer polyvinyl alcohol matrices were studied. As a basic method we have used photoinduced optical second harmonic generation (SHG). The Q‐switched HF‐laser (λ = 2.64.μm; pulse duration 30‐40 ps) was used as a source of probing (fundamental) light beam and the pulsed nitrogen (λ = 337.7 nm) was applied as a source of the photoinducing pump light. With increasing photoinducing beam power, the output SHG signal (at λ = 1.32 μm) increases. The maximal second‐order non‐linear optical susceptibility corresponds to tensor component d123 = d14 = 3.8 ± 0.2 pm/V at a photoinducing power density equal to about 1.25 GW/cm2. With decreasing temperature, the SHG signal increases within the temperature range 25‐30 K. Time‐dependent pump‐probe measurements of the SHG indicate an existence of the SHG maximum for a pump‐probe delaying time 20 ps. The ZnS hexagonal structural components play a crucial role in the observed photoinduced second‐order non‐linear optical effects. Large values of the non‐linear optical constants as well the good technological parameters open a possibility to enhance the non‐linear optical susceptibilities of the investigated ZnS nanocrystallites.  相似文献   

4.
ZnSe films were deposited on glass substrates keeping the substrate temperatures, at room temperature (RT), 75, 150 and 250 °C. The films have exhibited cubic structure oriented along the (111) direction. Both the crystallinity and the grain size increased with increasing deposition temperature. A very high value of absorption co‐efficient (104 cm‐1) is observed. The band gap values decrease from a value of 2.94 eV to 2.69 eV with increasing substrate temperature. The average refractive index value is in the range of 2.39 – 2.41 for the films deposited at different substrate temperatures. The conductivity values increases continuously with temperature. Laser Raman spectra showed peaks at 140.8 cm‐1, 246.7 cm‐1and 204.5 cm‐1which are attributable to 2TA LO phonon and TO phonon respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Mid‐infrared light emitting diodes (LED) in 3‐5μm wavelength range have been fabricated from InAs/InAsxP1‐x‐ySby/InAsx'P1‐x'‐y'Sby' composition graded layer and InAs/InAsSb multilayers. The heterostructures were grown by liquid phase epitaxy (LPE) between 600 and 520°C. An output power of 3.1 mW at 11K and of 10 μW at 300 K have been obtained under a peak current of 100 mA (50 % duty ratio) from InAsSb multilayers. Recombination mechanisms for these diodes were studied by temperature‐dependent emission spectra using Fourier transform infrared (FTIR) measurement system with double modulation. The output powers of the LEDs decrease rapidly at temperatures above 153 K suggesting that nonradiative and Auger recombinations are the main limitation of the device performance at high temperatures.  相似文献   

6.
GaSe single crystals grown by Bridgman method have been doped by ion implantation technique. The samples were bombarded in the direction parallel to c‐axis by Si ion beam of about 100 keV to doses of 1 × 1016 ions/cm2 at room temperature. The effects of Si implantation with annealing at 500 and 600 °C on the electrical properties have been studied by measuring the temperature dependent conductivity and photoconductivity under different illumination intensities in the temperature range of 100–320 K. It is observed that Si implantation increases the room temperature conductivity 10−7 to 10−3 (Ω‐cm)−1 depending on the post annealing temperature. The analysis of temperature dependent conductivity shows that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Annealing of the samples at and above 600 °C weakens the temperature dependence of the conductivity and photoconductivity. This indicates that annealing of the implanted samples activates Si‐atoms and increases structural deformations and stacking faults. The same behavior was observed from photoconductivity measurements. Hence, photocurrent‐illumination intensity dependence in the implanted samples obeys the power low IpcΦn with n between 1 and 2 which is an indication of continuous distribution of localized states in the band gap. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
InAs was grown by low-pressure metalorganic chemical vapor deposition on vicinal GaAs(1 0 0) substrates misoriented by 2° toward [0 0 1]. We observed InAs crystal growth, at substrate temperatures down to 300°C, employing in situ plasma-generated arsine radicals as the arsenic source. The in situ generated arsine was produced by placing solid arsenic downstream of a microwave driven hydrogen plasma. Trimethylindium (TMIn) feedstock carried by hydrogen gas was used as the indium source. The Arrhenius plot of InAs growth rate vs. reciprocal substrate temperature displayed an activation energy of 46.1 kcal/mol in the temperature range of 300–350°C. This measured activation energy value is very close to the energy necessary to remove the first methyl radical from the TMIn molecule, which has never been reported in prior InAs growth to the best of authors’ knowledge. The film growth mechanism is discussed. The crystallinity, infrared spectrum, electrical properties and impurity levels of grown InAs are also presented.  相似文献   

8.
采用热壁外延(Hot Wall Epitaxy,HWE)沉积系统在单晶Si(211)衬底表面制备了InAs薄膜,研究了不同生长温度(300℃、350℃、400℃、450℃和500℃)对薄膜材料结构及其电学性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、霍尔(Hall)测试等,对InAs/Si(211)薄膜的晶体结构、表面形貌及电学参数进行了测试分析.结果表明:采用HWE技术在Si(211)衬底表面成功制备了InAs薄膜,薄膜具有闪锌矿结构并沿(111)方向择优生长.随着生长温度从300℃升高到500℃,全峰半高宽(FWHM)先减小后增大,生长温度为400℃时薄膜的晶粒尺寸最大为73.4 nm,载流子浓度达到1022 cm-3,霍尔迁移率数值约为102 cm2/(V·s),说明优化生长温度能够降低InAs薄膜的缺陷复合,使薄膜结晶质量和电学性能得到提高.SEM及AFM的测试结果显示由于较高的晶格失配及Si衬底斜切面(211)的特殊取向,在Si(211)衬底上生长的InAs薄膜主要为三维层加岛状(S-K)生长模式,表面粗糙度(Ra)随温度的升高先减小后增大,400℃时薄膜的平均表面粗糙度Ra为48.37 nm.  相似文献   

9.
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower- and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105–291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots.  相似文献   

10.
N‐implantation to GaSe single crystals was carried out perpendicular to c‐axis with ion beam of 6 × 1015 ions/cm2 dose having energy values 30 keV and 60 keV. Temperature dependent electrical conductivities and Hall mobilities of implanted samples were measured along the layer in the temperature range of 100‐320 K. It was observed that N‐implantation decreases the resistivity values down to 103 Ω‐cm depending on the annealing temperature, from the room temperature resistivity values of as‐grown samples lying in the range 106‐107 Ω‐cm. The temperature dependent conductivities exhibits two regions (100‐190 and 200‐320 K) with the activation energies of 234‐267 meV and 26‐74 meV, for the annealing temperatures of 500 and 700 °C, respectively. The temperature dependence of Hall mobility for the sample annealed at 500 °C shows abrupt increase and decrease as the ambient temperature increases. The analysis of the mobility‐temperature dependence in the studied temperature range showed that impurity scattering and lattice scattering mechanisms are effective at different temperature regions with high temperature exponent. Annealing of the samples at 700 °C shifted impurity scattering mechanism toward higher temperature regions. In order to obtain the information about the defect produced by N‐implantation, the carrier density was analyzed by using single donor‐single acceptor model. We found acceptor ionization energy as Ea = 450 meV, and acceptor and donor concentration as 1.3 × 1013 and Nd = 3.5 × 1010 cm−3, respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Amorphous films of indium antimonide (0.02–0.26 μm) and indium arsenide (0.03–0.3 μm) were formed on goldseal glass, freshly cleaved mica and NaCl substrates by using a “flash evaporation” technique. The post-deposition heat treatment was carried out on these films when the amorphous → crystalline transformation was observed. The transformation was characterized by a sudden and large fall in the resistance of the film at a particular temperature depending on the thickness. This transformation was confirmed by transmission electron micrographs and diffraction patterns obtained on the films before and after heat treatment. The transformation temperatures lie between 495–525 K for indium antimonide and 550–575 K for indium aresenide, for the thickness range involved in our investigations. The electrical conductivity measurements showed a temperature dependent activation in the high temperature region and hopping conduction in the low temperature region (Mott's theory). The activation energies, at different temperatures for various thicknesses were calculated and presented. While no Hall mobility could be observed in as-deposited films, very low mobilities were observed in annealed thick films (t > 2000 Å). Thermoelectric power for InSb films was found to vary from 0.075–0.17 mV/K for films of thickness ranging from 1000–2300 Å, whereas for InAs films, its value varied from 0.09–0.27 mV/K for the thickness range, 1250–2500 Å. These measurements indicated the conductivity to be n-type and supported the hopping conduction mechanism observed in low temperature conductivity measurements.  相似文献   

12.
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at different substrate temperatures (303, 373 and 473 K) by vacuum evaporation. The elemental composition of the deposited InSb film was found to be 52.9% (In) and 47.1% (Sb). X‐ray diffraction studies confirm the polycrystallinity of the films and the films show preferential orientation along the (111) plane. The particle size (D), dislocation density (δ) and strain (ε) were evaluated. The particle size increases with the increase of substrate temperature, which was found to be in the range from 22.36 to 32.59 nm. In Laser Raman study, the presence of longitudinal mode (LO) confirms that the deposited films were having the crystalline nature. Raman peak located at 191.26 cm–1 shift towards the lower frequencies and narrows with increase in deposition temperature. This indicates that the crystallinity is improved in the films deposited at higher substrate temperatures. Hall measurements indicate that the films were p‐type, having carrier concentration ≅1016 cm–3 and mobility (4–7.7) ×103 cm2/Vs. It is observed that the carrier concentration (N) decreases and the Hall mobility (μ) increases with the increase of substrate temperature. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The effect of the type of solvent on the solid liquid interfacial energy was determined by performing induction time measurements of paracetamol in methanol, 1‐propanol, acetone and water at a constant supersaturation temperature of 30 °C and different levels of supersaturation (a/a*) ranging from 1.03 to 1.24. At equal supersaturation level and temperature the induction time increases with decreasing solubility whereas the solid liquid interfacial energy decreases with increasing solubility. The interfacial energy has a minimum value of 1.45 mJ/m2 in the solvent where paracetamol has a maximum solubility (methanol) whereas it has its maximum value of 2.91 mJ/m2 in the solvent with minimum solubility. The interfacial energy is a function of the solubility has been established. The critical radius for homogeneous nucleation was found to be minimum in the solvent of highest solubility. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The thermal and flow transport in an inductively heated Czochralski crystal growth furnace during a crystal growth process is investigated numerically. The temperature and flow fields inside the furnace, coupled with the heat generation in the iridium crucible induced by the electromagnetic field generated by the RF coil, are computed. The results indicate that for an RF coil fixed in position during the growth process, although the maximum value of the magnetic, temperature and velocity fields decrease, the convexity of the crystal‐melt interface increases for longer crystal growth lengths. The convexity of the crystal‐melt interface and the power consumption can be reduced by adjusting the relative position between the crucible and the induction coil during growth. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Structural, optical and electrical properties of Ge implanted GaSe single crystal have been studied by means of X‐Ray Diffraction (XRD), temperature dependent conductivity and photoconductivity (PC) measurements for different annealing temperatures. It was observed that upon implanting GaSe with Ge and applying annealing process, the resistivity is reduced from 2.1 × 109 to 6.5 × 105 Ω‐cm. From the temperature dependent conductivities, the activation energies have been found to be 4, 34, and 314 meV for as‐grown, 36 and 472 meV for as‐implanted and 39 and 647 meV for implanted and annealed GaSe single crystals at 500°C. Calculated activation energies from the conductivity measurements indicated that the transport mechanisms are dominated by thermal excitation at different temperature intervals in the implanted and unimplanted samples. By measuring photoconductivity (PC) measurement as a function of temperature and illumination intensity, the relation between photocurrent (IPC) and illumination intensity (Φ) was studied and it was observed that the relation obeys the power law, IPC αΦn with n between 1 and 2, which is indication of behaving as a supralinear character and existing continuous distribution of localized states in the band gap. As a result of transmission measurements, it was observed that there is almost no considerable change in optical band gap of samples with increasing annealing temperatures for as‐grown GaSe; however, a slight shift of optical band gap toward higher energies for Ge‐implanted sample was observed with increasing annealing temperatures. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The conductivity, mobility, photoconductivity and photo response measurements in GaS0.75Se0.25 mixed crystals were carried out in the temperature range of 150‐450 K. The room temperature conductivity, mobility and electron concentration values were 10‐9 (Ω‐cm)‐1, 48 cm2V‐1s‐1 and ∼109 cm‐3, respectively. Two donor levels were obtained from temperature‐dependent conductivity and carrier concentration, located at energies of about 755 and 465 meV below the conduction band. Single donor‐single acceptor analysis yields the same donor level at 465 meV with donor and acceptor concentrations of 8.7 × 1014 and 5.3 × 1013 cm‐3, respectively. The mobility‐temperature dependence shows that ionized impurity scattering dominates the conduction up to the temperature 310 K with different temperature exponent, while above this critical temperature; the phonon scattering is dominant conduction mechanism. From the photo‐response spectra, the maximum photocurrent was observed for all the samples at 2.42 eV, and varied slightly with temperature. Moreover, the photocurrent‐light intensity dependence in these crystals obeys the power law, Iphϕγ with γ between 1.7 and 2.0 for various applied fields and temperatures. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The main results of investigations in the fields of modern liquid crystal acoustics that originate from and continue the pioneering works of Prof. A.P. Kapustin are systematized and generalized. The following aspects of the problem are considered: acoustooptic phenomena, acoustoelectric interactions, acoustically induced domains, and effects of acoustical memory in liquid crystals. Acoustic devices based on liquid crystals are reviewed.  相似文献   

18.
Superconducting YBa2Cu3O7 (YBCO) thick films have been prepared using the screen printing method. Effects of gamma irradiation on their structure and transport properties have been investigated up to a gamma dose of 50 MR. A considerable decrease in the intensities of the major diffraction peaks of the XRD pattern was observed due to gamma irradiation. A gradual increase in the normal state resistance, with a gradual increase in the slope of the resistance‐temperature (R‐T) curves was observed with increasing gamma doses. However, slight decrease in the transition temperature has been observed. The Voltage‐current (V‐I) data were fitted to the power law V ∼ Iβ in which the power exponent β was found to increase gradually with gamma dose. The sensitivity of the R‐T and V‐I curves to gamma rays where precisely estimated and from which the regions of linear response were deduced. The possibility of using YBCO thick film as a candidate device for gamma rays sensing was presented. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Bulk MgB2 samples were prepared from the commercially available powder (Alfa‐Aesar). One of the samples was used in measuring the transport properties by the DC four‐probe technique while the other was used in measuring Hall effect using the van‐der‐Pauw configuration. From the transport measurements, we noticed that the R‐T curves shift to lower temperatures under applied magnetic field without any observed enlargement of the transition width. Tc gradually decreases from 37 K at zero field to 32 K at B = 1.4 T. Our V‐I data were found to obey a power law expression V ∝ Iβ(T, B). The change of β with temperature and magnetic field was shown and discussed. RH is positive under positive applied magnetic field. The 1/ RH linear dependency on T, usually observed in high temperature superconductors, could not be observed in our case. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The misfit dislocation configurations in InAs islands as well as in more or less continuous layers grown on (001) oriented GaAs substrates were studied by weak-beam and high-resolution electron microscopy. The islands are confined by {101} and {111} facets where the aspect ratio (height/lateral extension) can be affected by the growth conditions. It is possible to grow well-defined islands as well as relatively continuous layers by MOVPE under As-stabilized conditions. At constant deposition parameters the growth is characterized by islands of different sizes (but with constant aspect ratio) in various strain states depending on their dislocation content. Coherently strained islands without any dislocation can be observed for heights up to 23 ML InAs, or otherwise, up to a maximal island extension of about 12 nm (for the particular aspect ratio ≈︂0.585). With further increase of island height and lateral extension, the introduction of dislocations becomes favourable. Independent of the island size, the layer thickness and the dislocation density, a residual elastic strain of about εr = —0.8% remains after relaxation. This means, about 88% of the total misfit strain of ε = —6.686 × 10—2 were compensated by Lomer dislocations. These sessile Lomer dislocations lie in the island interior only, where single 60° dislocations were observed exclusively in their near-edge regions. With increasing island size and/or layer thickness some close-spaced 60° dislocations occur additionally within the interfacial region. The Lomer dislocations that are always located 4 monolayers (ML) above the InAs/GaAs interfacial plane result from the well-known fusion of two 60° slip dislocations. These 60° dislocations have been nucleated 7 … 8 ML above the interface at surface steps on the {111} facets confining the islands. Based on our experimental observations a new mechanism is proposed that explains the origin of these 60° dislocations. Their further fusion to sessile Lomer dislocations that compensate the misfit strain most efficiently occurs in the way as commonly accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号