首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Electrophoresis》2018,39(7):989-997
Dielectrophoresis (DEP) has been widely studied for its potential as a biomarker‐free method of sorting and characterizing cells based upon their dielectric properties. Most studies have employed voltage signals from ∼1 kHz to no higher than ∼30 MHz. Within this range a transition from negative to positive DEP can be observed at the cross‐over frequency fx01. The value of fx01 is determined by the conductivity of the suspending medium, as well as the size and shape of the cell and the dielectric properties (capacitance, conductivity) of its plasma membrane. In this work DEP measurements were performed up to 400 MHz, where the transition from positive to negative DEP can be observed at a higher cross‐over frequency fx02. SP2/O murine myeloma cells were suspended in buffer media of different osmolarities and measurements taken of cell volume, fx01 and fx02. Potassium‐binding benzofuran isophthalate (PBFI), a potassium‐sensitive fluorophore, and flow cytometry was employed to monitor relative changes in intracellular potassium concentration. In agreement with theory, it was found that fx02 is independent of the cell parameters that control fx01 and is predominantly determined by intracellular conductivity. In particular, the value of fx02 is highly correlated to that of the intracellular potassium concentration.  相似文献   

2.
The ability to transport and store a large human blood inventory for transfusions is an essential requirement for medical institutions. Thus, there is an important need for rapid and low-cost characterization tools for analyzing the properties of human red blood cells (RBCs) while in storage. In this study, we investigate the ability to use dielectrophoresis (DEP) for measuring the storage-induced changes in RBC electrical properties. Fresh human blood was collected, suspended in K2-EDTA anticoagulant, and stored in a blood bank refrigerator for a period of 20 days. Cells were removed from storage at 5-day intervals and subjected to a glutaraldehyde crosslinking reaction to “freeze” cells at their ionic equilibrium at that point in time and prevent ion leakage during DEP analysis. The DEP behavior of RBCs was analyzed in a high permittivity DEP buffer using a three-dimensional DEP chip (3DEP) and also compared to measurements taken with a 2D quadrupole electrode array. The DEP analysis confirms that RBC electrical property changes occur during storage and are only discernable with the use of the cell crosslinking reaction above a glutaraldehyde fixation concentration of 1.0 w/v%. In particular, cytoplasm conductivity was observed to decrease by more than 75% while the RBC membrane conductance was observed to increase by more than 1000% over a period of 20 days. These results show that the presented combination of chemical crosslinking and DEP can be used as rapid characterization tool for monitoring electrical properties changes of human RBCs while subjected to refrigeration in blood bank storage.  相似文献   

3.
Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells’ native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1–2 h of exposure and subsequent culture, cells’ viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells’ dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.  相似文献   

4.
The detection of circulating tumor cells (CTCs) in blood is crucial to assess metastatic progression and to guide therapy. Dielectrophoresis (DEP) is a powerful cell surface marker-free method that allows intrinsic dielectric properties of suspended cells to be exploited for CTC enrichment/isolation from blood. Design of a successful DEP-based CTC enrichment/isolation system requires that the DEP response of the targeted particles should accurately be known. This paper presents a DEP spectrum method to investigate the DEP spectra of cells without directly analyzing their membrane and cytoplasmic properties in contrast to the methods in literature, which employ theoretical assumptions and complex modeling. Integrating electric field simulations based on DEP theory with the experimental data enables determination of the DEP spectra of leukocyte subpopulations, polymorphonuclear and mononuclear leukocytes, and MCF7 breast cancer cells as a model of CTC due to their metastatic origin over the frequency range 100 kHz–50 MHz at 10 Vpp. In agreement with earlier findings, differential DEP responses were detected for mononuclear and polymorphonuclear leukocytes due to the richness of the cell surface features and morphologies of the different leukocyte types. The data reveal that the strength of the DEP force exerted on MCF7 cells was particularly high between 850 kHz and 20 MHz. These results illustrate that the proposed technique has the potential to provide a generic platform to identify DEP responses of different biological particles.  相似文献   

5.
A novel scanning probe microscopy technique has allowed dielectrophoretic force imaging with nanoscale spatial resolution. Dielectrophoresis (DEP) traditionally describes the mobility of polarizable particles in inhomogeneous alternating current (ac) electric fields. Integrating DEP with atomic force microscopy allows for noncontact imaging with the image contrast related to the local electric polarizability. By tuning the ac frequency, dielectric spectroscopy can be performed at solid/liquid interfaces with high spatial resolution. In studies of cells, the frequency-dependent dielectrophoretic force is sensitive to biologically relevant electrical properties, including local membrane capacitance and ion mobility. Consequently, dielectrophoretic force microscopy is well suited for in vitro noncontact scanning probe microscopy of biological systems.  相似文献   

6.
Prieto JL  Lu J  Nourse JL  Flanagan LA  Lee AP 《Lab on a chip》2012,12(12):2182-2189
We present an automated dielectrophoretic assisted cell sorting (DACS) device for dielectric characterization and isolation of neural cells. Dielectrophoretic (DEP) principles are often used to develop cell sorting techniques. Here we report the first statistically significant neuronal sorting using DACS to enrich neurons from a heterogeneous population of mouse derived neural stem/progenitor cells (NSPCs) and neurons. We also study the dielectric dispersions within a heterogeneous cell population using a Monte-Carlo (MC) simulation. This simulation model explains the trapping behavior of populations as a function of frequency and predicts sorting efficiencies. The platform consists of a DEP electrode array with three multiplexed trapping regions that can be independently activated at different frequencies. A novel microfluidic manifold enables cell sorting by trapping and collecting cells at discrete frequency bands rather than single frequencies. The device is used to first determine the percentage of cells trapped at these frequency bands. With this characterization and the MC simulation we choose the optimal parameters for neuronal sorting. Cell sorting experiments presented achieve a 1.4-fold neuronal enrichment as predicted by our model.  相似文献   

7.
In this work, we present an optical transit DEP flow cytometer for parallel single-cell analysis. Each cell's dielectric property is inferred from velocity perturbations due to DEP actuation in a microfluidic channel. Dual LED sources facilitate velocity measurement by producing two transit shadows for each cell passing through the channel. These shadows are detected using a 256-pixel linear optical array detector. Massively parallel analysis is possible as each pixel of the detector can independently analyze the passing cells. A wide channel (∼18 mm) was employed to carry many particles simultaneously, and the system was capable of detecting the velocity of over 200 cells simultaneously. We have achieved analysis rates for 10 µm diameter polystyrene spheres response exceeding 250 per second. With appropriate calibration, this DEP cytometer can quantitatively measure the dielectric response. The dielectric response (Clausius–Mossotti factor) of viable CHO cells was measured over the frequency range of 100 kHz to 6 MHz, and the obtained response matches the previously measured values by our group. The DEP cytometer uses simple modular components to achieve high throughput label-free single-cell dielectric analysis and can begin analyzing particles within 10 s after starting to pump the sample into the channel.  相似文献   

8.
Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in nonuniform electric fields by utilizing unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to DEP application in biomedical field reported between 2016 and 2020. First, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Second, the biomedical uses of DEP in liquid biopsies, stem cell-based therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned.  相似文献   

9.
Zwitterionic additives provide a means of altering the EOF without increasing conductivity. The magnitude of the EOF in a bare silica capillary increased by as much as 69% upon addition of 500 mM of zwitterion to the running buffer. The EOF enhancement increases linearly with the zwitterion concentration. With zwitterionic additives of the form +NH3-(CH2)n-COO-, the magnitude of the EOF increase is directly related to the number of methylene groups, (n), which ranges from n = 1 to 7. The endgroups on the zwitterions also affect the EOF enhancement. The effect of Z1-methyl (+N(CH3)3CH2CH2CH2SO3-) on EOF was not a function of either the buffer cation or pH. The EOF enhancement is a function of the dielectric increment of the additive and the nature of the amine functionality.  相似文献   

10.
Fan SK  Huang PW  Wang TT  Peng YH 《Lab on a chip》2008,8(8):1325-1331
Two important electric forces, dielectrophoresis (DEP) and electrowetting-on-dielectric (EWOD), are demonstrated by dielectric-coated electrodes on a single chip to manipulate objects on different scales, which results in a dielectrophoretic concentrator in an EWOD-actuated droplet. By applying appropriate electric signals with different frequencies on identical electrodes, EWOD and DEP can be selectively generated on the proposed chip. At low frequencies, the applied voltage is consumed mostly in the dielectric layer and causes EWOD to pump liquid droplets on the millimetre scale. However, high frequency signals establish electric fields in the liquid and generate DEP forces to actuate cells or particles on the micrometre scale inside the droplet. For better performance of EWOD and DEP, square and strip electrodes are designed, respectively. Mammalian cells (Neuro-2a) and polystyrene beads are successfully actuated by a 2 MHz signal in a droplet by positive DEP and negative DEP, respectively. Droplet splitting is achieved by EWOD with a 1 kHz signal after moving cells or beads to one side of the droplet. Cell concentration, measured by a cell count chamber before and after experiments, increases 1.6 times from 8.6 x 10(5) cells ml(-1) to 1.4 x 10(6) cells ml(-1) with a single cycle of positive DEP attraction. By comparing the cutoff frequency of the voltage drop in the dielectric layer and the cross-over frequency of Re(fCM) of the suspended particles, we can estimate the frequency-modulated behaviors between EWOD, positive DEP, and negative DEP. A proposed weighted Re(fCM) facilitates analysis of the DEP phenomenon on dielectric-coated electrodes.  相似文献   

11.
Cancer stem cells (CSCs) are aggressive subpopulations with increased stem‐like properties. CSCs are usually resistant to most standard therapies and are responsible for tumor repropagation. Similar to normal stem cells, isolation of CSCs is challenging due to the lack of reliable markers. Antigen‐based sorting of CSCs usually requires staining with multiple markers, making the experiments complicated, expensive, and sometimes unreliable. Here, we study the feasibility of using dielectrophoresis (DEP) for isolation of glioblastoma cells with increased stemness. We culture a glioblastoma cell line in the form of neurospheres as an in vitro model for glioblastoma stem cells. We demonstrate that spheroid forming cells have higher expression of stem cell marker, nestin. Next, we show that dielectric properties of neurospheres change as a result of changing culture conditions. Our results indicate that spheroid forming cells need higher voltages to experience the same DEP force magnitude compared to normal monolayer cultures of glioblastoma cell line. This study confirms the possibility of using DEP to isolate glioblastoma stem cells.  相似文献   

12.
Establishing the 3D microscale organization of cells has numerous practical applications, such as in determining cell fate (e.g., proliferation, migration, differentiation, and apoptosis) and in making functional tissue constructs. One approach to spatially pattern cells is by dielectrophoresis (DEP). DEP has characteristics that are important for cell manipulation, such as high accuracy, speed, scalability, and the ability to handle both adherent and non-adherent cells. However, widespread application of this method is largely restricted because there is a limited number of suitable hydrogels for cell encapsulation. To date, polyethylene glycol-diacrylate (PEG-DA) and agarose have been used extensively for dielectric patterning of cells. In this study, we propose gelatin methacrylate (GelMA) as a promising hydrogel for use in cell dielectropatterning because of its biocompatibility and low viscosity. Compared to PEG hydrogels, GelMA hydrogels showed superior performance when making cell patterns for myoblast (C2C12) and endothelial (HUVEC) cells as well as in maintaining cell viability and growth. We also developed a simple and robust protocol for co-culture of these cells. Combined application of the GelMA hydrogels and the DEP technique is suitable for creating highly complex microscale tissues with important applications in fundamental cell biology and regenerative medicine in a rapid, accurate, and scalable manner.  相似文献   

13.
We report the use of dielectrophoresis (DEP) to position U-937 monocytes within a non-uniform electric field, prior to electroporation (EP) for gene delivery. DEP positioning and EP pulsing were both accomplished using a common set of inert planar electrodes, micro-fabricated on a glass substrate. A single-shell model of the cell's dielectric properties and finite-element modeling of the electric field distribution permitted us to predict the major features of cell positioning. The extent to which electric pulses increased the permeability of the cell membranes to fluorescent molecules and to pEGFPLuc DNA plasmids were found to depend on prior positioning. For a given set of pulse parameters, EP was either irreversible (resulting in cytolysis), reversible (leading to gene delivery), or not detectable, depending on where cells were positioned. Our results clearly demonstrate that position-dependent EP of cells in a non-uniform electric field can be controlled by DEP.  相似文献   

14.
Many biomedical analysis applications require trapping and manipulating single cells and cell clusters within microfluidic devices. Dielectrophoresis (DEP) is a label-free technique that can achieve flexible cell trapping, without physical barriers, using electric field gradients created in the device by an electrode microarray. Little is known about how fluid flow forces created by the electrodes, such as thermally driven convection and electroosmosis, affect DEP-based cell capture under high conductance media conditions that simulate physiologically relevant fluids such as blood or plasma. Here, we compare theoretical trajectories of particles under the influence of negative DEP (nDEP) with observed trajectories of real particles in a high conductance buffer. We used 10-µm diameter polystyrene beads as model cells and tracked their trajectories in the DEP microfluidic chip. The theoretical nDEP trajectories were in close agreement with the observed particle behavior. This agreement indicates that the movement of the particles was highly dominated by the DEP force and that contributions from thermal- and electroosmotic-driven flows were negligible under these experimental conditions. The analysis protocol developed here offers a strategy that can be applied to future studies with different applied voltages, frequencies, conductivities, and polarization properties of the targeted particles and surrounding medium. These findings motivate further DEP device development to manipulate particle trajectories for trapping applications.  相似文献   

15.
Abstract— The photodynamic action of protoporphyrin on red cell ghosts is reflected by extensive cross-linking of membrane proteins to very high molecular weight protein aggregates. This process was studied with sepharose gel chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis.
Most sensitive to this photodynamic effect are spectrin and band 2. 1, 2. 2, 2.3 and 4.1. polypeptides, which are cross-linked after very brief illumination periods, with a concomitant loss of spectrin-associated ATPase activity. Band 6 protein, representing the monomeric form of glyceraldehyde-3-phosphate dehydrogenase, is also very sensitive to protoporphyrin-induced cross-linking. The enzymatic activity decreased even faster than the amount of band 6 polypeptides, suggesting that modification(s) of the enzyme other than cross-linking, possibly by rapid photooxidation of a thiol group, may be responsible for inactivation.
Extracted and purified spectrin was cross-linked with about the same velocity as membrane-bound spectrin, reinforcing our previously drawn conclusion that membrane lipids are not involved in the cross-linking reaction. Eluted band 6 polypeptides on the other hand exhibited a relatively fast photo-oxidative modification but a much slower cross-linking to dimers and tetramers. This suggests that the membrane structure, e.g. the spectrin matrix may play an essential role in the incorporation of membrane-bound band 6 polypeptides in the high molecular weight cross-linked complex.  相似文献   

16.
Cao C  Zhang W  Fan L  Shao J  Li S 《Talanta》2011,84(3):651-658
The condensation of low abundance zwitterion substance, such as protein and peptide, has great significance to the study on proteomics. This paper develops the theory on design of online stacking conditions of zwitterion by a moving reaction boundary (MRB) in capillary electrophoresis (CE). This concerns the choice of running and sample buffers, velocity design of MRB, and salt effect on the stacking. The theoretical results unveil that: (1) the velocity of MRB formed with weak acidic buffer and strong alkali should be set between zero and the velocity of zwitterion in the alkali phase, or no stacking occurs; (2) if a strong alkali is used to prepare the sample, a much long front plug of strong base must be injected before the alkaline sample plug for complete stacking, whereas no such front plug is needed if a weak alkali with enough high concentration and pH value is used to prepare the sample buffer; (3) the existence of salt in sample matrix has a weak effect on the stacking of zwitterion if sample is prepared with weak alkaline buffer, while has a dramatic effect on the same stacking if with a strong base buffer. In addition, the concentration of weak alkali used for preparation of sample should be set at the point, at which the velocity of MRB is as much as possible close to that of negative zwitterion. The developed theory and its computation are quantitatively proved by the experiments of zwitterion stacking by the MRB as shown in the previous and the accompanying papers. The proposed theoretic results hold obvious significances on-column stacking of low abundance zwitterions, such as amino acid, or peptides or proteins, in CE.  相似文献   

17.
The motion of a suspension of erythrocytes (red blood cells, RBCs) in response to a high-frequency alternating current (AC) field in a microfluidic device is examined with parallel and orthogonal electrode configurations to delineate the various fundamental driving forces. Cell repulsion from the platinum electrodes due to electrode polarization interacting with cell membrane polarizations is observed to be the strongest force acting on the particles in the first few seconds of field application. We exploit this strong repulsion to concentrate the bioparticles between the microelectrodes to amplify multiparticle aggregation phenomenon and dielectrophoretic (DEP) manipulation in a small and well-characterized region within the microfluidic device. Secondary motions include RBC pearl chain formation along field lines due to particle polarization followed by classical dielectrophoretic motion of the chains across field lines to regions of weaker field. These are driven by far weaker dipole-dipole and field-dipole interactions than the preliminary electrode repulsions. RBC chain length and total aggregated cells are presented for a variety of AC frequencies and are significantly amplified by the electrode repulsion. Motion of particles away from the polarized electrode is found to be species- and age-sensitive and can stand by itself as a promising identification and separation mechanism. In a 0.1 S/m isotonic phosphate buffer saline medium, we observe the largest cell mobilities at an optimal frequency of approximately 1 MHz, corresponding to the inverse diffusion time across the double layer of the cell and across the electrode's polarized layer. This suggests that the dielectric responses of both particles and electrodes in the low MHz frequency range are mostly determined by normal electromigration of ions from the bulk to their interfaces. Sensitivity to RBC age and species suggests that the surface proteins and membrane ion channels can affect the capacitance of the interface to accommodate the ions from the bulk. Such surface ion accumulation and polarization mechanisms are different from the classical dielectric theories. The resonant frequency of electrode polarization at around 1 MHz falls between positive and negative dielectrophoretic resonant frequency peaks - suggesting that the double-layer polarization mechanism is a distinct and potentially important bioparticle manipulation tool.  相似文献   

18.
A novel fluoran-based fluorescent probe 2 has been designed and synthesized by using a strategy of blocking the intramolecular photoinduced electron transfer (PET) process. The probe keeps a ring-closed spirolactone structure in aqueous buffer solution. However, the oxidation of the probe by ClO? perturbs a new equilibrium of the structural interconversion between the nonfluorescent spirolactone and the fluorescent ring-opened zwitterion, which generates a highly selective fluorescent probe for ClO?. Meanwhile, the probe is cell membrane permeable and can be utilized as fluorescent probe for imaging ClO? in living cells.  相似文献   

19.
This work explores dielectrophoresis (DEP)‐active hydrophoresis in sorting particles and cells. The device consists of prefocusing region and sorting region with great potential to be integrated into advanced lab‐on‐a‐chip bioanalysis devices. Particles or cells can be focused in the prefocusing region and then sorted in the sorting region. The DEP‐active hydrophoretic sorting is not only based on size but also on dielectric properties of the particles or cells of interest without any labelling. A mixture of 3 and 10 μm particles were sorted and collected from corresponding outlets with high separation efficiency. According to the different dielectric properties of viable and nonviable Chinese Hamster Ovary (CHO) cells at the medium conductivity of 0.03 S/m, the viable CHO cells were focused well and sorted from cell sample with a high purity.  相似文献   

20.
The capture of circulating tumor cells (CTCs) from cancer patient blood enables early clinical assessment as well as genetic and pharmacological evaluation of cancer and metastasis. Although there have been many microfluidic immunocapture and electrokinetic techniques developed for isolating rare cancer cells, these techniques are often limited by a capture performance tradeoff between high efficiency and high purity. We present the characterization of shear‐dependent cancer cell capture in a novel hybrid DEP–immunocapture system consisting of interdigitated electrodes fabricated in a Hele‐Shaw flow cell that was functionalized with a monoclonal antibody, J591, which is highly specific to prostate‐specific membrane antigen expressing prostate cancer cells. We measured the positive and negative DEP response of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency, and showed that DEP can control capture performance by promoting or preventing cell interactions with immunocapture surfaces, depending on the sign and magnitude of the applied DEP force, as well as on the local shear stress experienced by cells flowing in the device. This work demonstrates that DEP and immunocapture techniques can work synergistically to improve cell capture performance, and it will aid in the design of future hybrid DEP–immunocapture systems for high‐efficiency CTC capture with enhanced purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号