共查询到15条相似文献,搜索用时 93 毫秒
1.
采用脉冲激光沉积法制备了NiCo2S4薄膜,利用恒流充放电和循环伏安测试研究了NiCo2S4薄膜作为锂离子电池负极材料的电化学性能和充放电机理。采用高分辨电子显微镜和选区电子衍射(TEM&SAED)表征了NiCo2S4薄膜首次循环过程中的组成与结构变化。恒流充放电测试结果显示NiCo2S4薄膜在3 μA·cm-2的放电电流下,0~3 V(vs Li+/Li)范围内,薄膜的首次放电容量为698 mAh·g-1,经过200次循环之后的放电容量为365 mAh·g-1;在循环伏安测试中得到了分步反应的可逆氧化还原峰。TEM和SAED分析结果揭示了NiCo2S4薄膜与Li的电化学反应机理:首次放电过程中NiCo2S4与Li发生转化反应生成了Li2S、Ni和Co,充电后生成了CoS和NiS复合薄膜。后续循环为CoS和NiS复合薄膜的可逆分解与形成。研究表明NiCo2S4是一种有潜在应用价值的锂离子电池负极材料。 相似文献
2.
采用脉冲激光沉积法制备了NiCo2S4薄膜,利用恒流充放电和循环伏安测试研究了NiCo2S4薄膜作为锂离子电池负极材料的电化学性能和充放电机理。采用高分辨电子显微镜和选区电子衍射(TEM&SAED)表征了NiCo2S4薄膜首次循环过程中的组成与结构变化。恒流充放电测试结果显示NiCo2S4薄膜在3 μA·cm-2的放电电流下,0~3 V(vs Li+/Li)范围内,薄膜的首次放电容量为698 mAh·g-1,经过200次循环之后的放电容量为365 mAh·g-1;在循环伏安测试中得到了分步反应的可逆氧化还原峰。TEM和SAED分析结果揭示了NiCo2S4薄膜与Li的电化学反应机理:首次放电过程中NiCo2S4与Li发生转化反应生成了Li2S、Ni和Co,充电后生成了CoS和NiS复合薄膜。后续循环为CoS和NiS复合薄膜的可逆分解与形成。研究表明NiCo2S4是一种有潜在应用价值的锂离子电池负极材料。 相似文献
3.
4.
5.
采用脉冲激光溅射Cr和P粉的混合靶成功制备了CrP薄膜,选区电子衍射(SAED)和光电子能谱(XPS)分析显示经过真空原位400℃退火以后,薄膜主要由多晶态的CrP组成。非原位HRTEM和SEM测试结果表明CrP薄膜在充放电前后的形貌有较大的改变。SAED、充放电和循环伏安测试证实了CrP和锂的电化学反应机理如下:CrP在Li+的驱动下,生成了Cr和Li3P。在其后的充放电过程中,发生了Li在LiP中可逆的嵌入和脱出反应。由于CrP首次容量高达1 168 mAh·g-1以及在0.7 V左右具有平稳的放电平台,显示了它可能成为一种新型的锂离子电池的负极材料。 相似文献
6.
高能量密度、功率密度和高温度稳定性的全固态薄膜锂离子电池是微电子器件的理想电源.开发新型的大比容量正极薄膜材料是解决问题的关键之一.与LiCoO2正极相比,层状结构的LiNi0.5Mn0.5O2有更高的可逆比容量和结构稳定性.本文应用脉冲激光沉积法制备LiNi0.5Mn0.5O2沉积薄膜,研究了衬底材料、温度对薄膜的微观结构、表面形貌及组分的影响.由LiNi0.5Mn0.5O2电极组装半电池,研究了薄膜的电化学性能与晶体结构、表面形貌及组分间的关系,表征了LiNi0.5Mn0.5O2沉积薄膜于不同充电截止电压的循环稳定性及倍率性能,并讨论了LiNi0.5Mn0.5O2薄膜的结构特点. 相似文献
7.
脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能 总被引:5,自引:0,他引:5
采用脉冲激光沉积结合高温退火的方法在不锈钢基片上制备了LiFePO4薄膜电极. XRD谱图显示, 经650 ℃退火制得的是具有橄榄石结构的LiFePO4薄膜. 充放电测试表明, LiFePO4薄膜具有3.45/3.40 V的充放电平台, 与LiFePO4粉体材料相当. 首次放电容量约为27 mAh•g-1, 充放电循环100次后容量衰减51%. 相似文献
8.
以磷铁废渣(Fe1.5P)和温室效应气体CO2为原料,以磷酸为补充磷源合成磷酸铁锂(LiFePO4)的前驱体Fe2P2O7,并研究了其合成过程对LiFePO4正极材料储能性能的影响。采用SEM观察了LiFePO4的表面形貌,采用XRD分析了LiFePO4和Fe2P2O7的晶体结构。进一步对该方法进行优化,发现Fe1.5P与磷酸混合物(nFe1.5P:nH3PO4=1:1)在800℃热处理6 h合成的Fe2P2O7对应的LiFePO4/C电化学性能最好,在0.1C,0.2C,0.5C和1C倍率下的容量分别可达130,126,117和108 mAh·g-1。 相似文献
9.
以磷铁废渣(Fe1.5P)和温室效应气体CO2为原料,以磷酸为补充磷源合成磷酸铁锂(LiFePO4)的前驱体Fe2P2O7,并研究了其合成过程对LiFePO4正极材料储能性能的影响。采用SEM观察了LiFePO4的表面形貌,采用XRD分析了LiFePO4和Fe2P2O7的晶体结构。进一步对该方法进行优化,发现Fe1.5P与磷酸混合物(nFe1.5P:nH3PO4=1:1)在800℃热处理6 h合成的Fe2P2O7对应的LiFePO4/C电化学性能最好,在0.1C,0.2C,0.5C和1C倍率下的容量分别可达130,126,117和108 mAh·g-1。该方法具有成本低廉,减少碳排放和环境友好等特点,为LiFePO4正极材料的生产提出了一种新的工艺。 相似文献
10.
采用固相烧结法制备了纯相Li2MnO3正极材料及靶材,采用脉冲激光沉积(PLD)法在氧气气氛、不同温度下沉积了Li2MnO3薄膜. 通过X射线衍射(XRD)和拉曼(Raman)光谱表征了薄膜的晶体结构,采用扫描电镜(SEM)观察薄膜形貌及厚度,利用电化学手段测试了Li2MnO3薄膜作为锂离子电池正极材料性能. 结果表明,PLD 方法制备的纯相Li2MnO3薄膜随着沉积温度升高薄膜结晶性变好. 25 ℃沉积的薄膜难以可逆充放电,400 ℃沉积的薄膜具有较高的电化学活性和循环稳定性. 相对于粉末材料,400与600 ℃制备的Li2MnO3薄膜电极平均放电电位随着循环次数的衰减速率明显低于相应的粉体材料. 相似文献
11.
采用脉冲激光溅射Fe和Se粉末的混合靶制备FeSe薄膜并用XRD、充放电和循环伏安测试研究了薄膜的结构和电化学性质. XRD结果显示, 当基片温度为200 ℃时, 薄膜主要由晶态的FeSe组成. 在电压1.0~3.0 V范围内, 该薄膜的可逆容量为360.8 mAh•g-1, 经过100次循环之后的放电容量为396.5 mAh•g-1, 具有很好的循环性能. ex situ XRD结果显示FeSe能够和Li发生可逆的电化学反应, 颗粒尺寸大于5 nm的纳米铁颗粒能够驱动Li2Se的分解并在充电过程中重新生成FeSe. FeSe具有较高的可逆容量和较好的循环性能, 可能成为一种优良的锂二次电池正极材料. 相似文献
12.
13.
Well-crystallized LiNiO2 thin films were prepared directly on nickel substrates in LiOH solution by constant current electrochemical deposition technique at 95 ℃. The as-prepared LiNiO2 thin films were characterized by using XRD, SEM and XPS, and the results reveal that the as-prepared LiNiO2 thin films are dense and uniform in surface and show hexagonal structure. The influence of processing parameters such as reaction temperature, duration, electrical current density as well as the concentration of LiOH solution on the structure and morphologies of as-prepared LiNiO2 thin films were studied,and the preferable electrochemical processing conditions for preparing LiNiO2 thin films were suggested. 相似文献
14.
脉冲激光沉积法制备SnSe薄膜电极及其电化学性质 总被引:1,自引:0,他引:1
采用脉冲激光溅射Sn和Se粉末的混合靶制备SnSe薄膜, XRD结果显示室温下得到的是Sn和Se的混合薄膜, 当基片温度为200 ℃时, 薄膜主要由晶态的SnSe组成. 该薄膜的首次放电容量为498 mAh•g-1, 30次循环之后的放电容量为260 mAh•g-1. 充放电测试、循环伏安曲线和ex-situ XRD结果显示, SnSe能够和Li发生可逆的电化学反应, 充电过程中能够重新生成SnSe, 表现出不同于其它氧族元素锡化物的电化学性质. 相似文献
15.
P. Berastegui S. HullF.J. Garc? Garc? J. Grins 《Journal of solid state chemistry》2002,168(1):294-305
The structures of the oxyorthogermanate La2(GeO4)O and the apatite-structured La9.33(GeO4)6O2 have been refined from powder neutron diffraction data. La2(GeO4)O crystallizes in a monoclinic unit cell (P21/c) and is cation stoichiometric in contrast to previous reports. La9.33(GeO4)6O2 crystallizes in a hexagonal unit cell (P63/m) and the powder diffraction data show anisotropic peak broadening that is observed in electron diffraction patterns as incommensurate diffuse spots at hkq reciprocal planes (with q=1.6-1.7) and can be attributed to a correlated disorder in the “apatite channels”. This compound was doped up to a nominal composition close to M2La8(GeO4)6O2 with M=Ca, Sr, Ba. The dopant ions preferentially occupy the 4f sites as the number of La vacancies decreases. The measured ionic conductivity of La9.33(GeO4)6O2 is about 3 orders of magnitude larger than for La2(GeO4)O at high temperatures and decreases with increasing dopant content from the highest value of about 0.16 S cm−1 at 1160 K. 相似文献