首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations.  相似文献   

2.
As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host–guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye–Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.  相似文献   

3.
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein–ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.  相似文献   

4.
We propose a free energy calculation method for receptor–ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host–guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein–ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.  相似文献   

5.
6.
Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform–water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER‐99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld‐I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld‐I method related to the unstable isolated anionic nitrogen pro‐atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc.  相似文献   

7.
In the drug discovery process, accurate methods of computing the affinity of small molecules with a biological target are strongly needed. This is particularly true for molecular docking and virtual screening methods, which use approximated scoring functions and struggle in estimating binding energies in correlation with experimental values. Among the various methods, MM‐PBSA and MM‐GBSA are emerging as useful and effective approaches. Although these methods are typically applied to large collections of equilibrated structures of protein‐ligand complexes sampled during molecular dynamics in water, the possibility to reliably estimate ligand affinity using a single energy‐minimized structure and implicit solvation models has not been explored in sufficient detail. Herein, we thoroughly investigate this hypothesis by comparing different methods for the generation of protein‐ligand complexes and diverse methods for free energy prediction for their ability to correlate with experimental values. The methods were tested on a series of structurally diverse inhibitors of Plasmodium falciparum DHFR with known binding mode and measured affinities. The results showed that correlations between MM‐PBSA or MM‐GBSA binding free energies with experimental affinities were in most cases excellent. Importantly, we found that correlations obtained with the use of a single protein‐ligand minimized structure and with implicit solvation models were similar to those obtained after averaging over multiple MD snapshots with explicit water molecules, with consequent save of computing time without loss of accuracy. When applied to a virtual screening experiment, such an approach proved to discriminate between true binders and decoy molecules and yielded significantly better enrichment curves. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
The binding energies of imatinib and nilotinib to tyrosine kinase have been determined by quantum mechanical (QM) computations, and compared with literature binding energy studies using molecular mechanics (MM). The potential errors in the computational methods include these critical factors:
  • •Errors in X-ray structures such as structural distortions and steric clashes give unrealistically high van der Waals energies, and erroneous binding energies.
  • •MM optimization gives a very different configuration to the QM optimization for nilotinib, whereas the imatinib ion gives similar configurations
  • •Solvation energies are a major component of the overall binding energy. The QM based solvent model (PCM/SMD) gives different values from those used in the implicit PBSA solvent MM models. A major error in inhibitor—kinase binding lies in the non-polar solvation terms.
  • •Solvent transfer free energies and the required empirical solvent accessible surface area factors for nilotinib and imatinib ion to give the transfer free energies have been reverse calculated. These values differ from those used in the MM PBSA studies.
  • •An intertwined desolvation—conformational binding selectivity process is a balance of thermodynamic desolvation and intramolecular conformational kinetic control.
  • •The configurational entropies (TΔS) are minor error sources.
  相似文献   

9.
The linear interaction energy (LIE) method in combination with two different continuum solvent models has been applied to calculate protein-ligand binding free energies for a set of inhibitors against the malarial aspartic protease plasmepsin II. Ligand-water interaction energies are calculated from both Poisson-Boltzmann (PB) and Generalized Born (GB) continuum models using snapshots from explicit solvent simulations of the ligand and protein-ligand complex. These are compared to explicit solvent calculations, and we find close agreement between the explicit water and PB solvation models. The GB model overestimates the change in solvation energy, and this is caused by consistent underestimation of the effective Born radii in the protein-ligand complex. The explicit solvent LIE calculations and LIE-PB, with our standard parametrization, reproduce absolute experimental binding free energies with an average unsigned error of 0.5 and 0.7 kcal/mol, respectively. The LIE-GB method, however, requires a constant offset to approach the same level of accuracy.  相似文献   

10.
Solvent effects play a crucial role in mediating the interactions between proteins and their ligands. Implicit solvent models offer some advantages for modeling these interactions, but they have not been parameterized on such complex problems, and therefore, it is not clear how reliable they are. We have studied the binding of an octapeptide ligand to the murine MHC class I protein using both explicit solvent and implicit solvent models. The solvation free energy calculations are more than 103 faster using the Surface Generalized Born implicit solvent model compared to FEP simulations with explicit solvent. For some of the electrostatic calculations needed to estimate the binding free energy, there is near quantitative agreement between the explicit and implicit solvent model results; overall, the qualitative trends in the binding predicted by the explicit solvent FEP simulations are reproduced by the implicit solvent model. With an appropriate choice of reference system based on the binding of the discharged ligand, electrostatic interactions are found to enhance the binding affinity because the favorable Coulomb interaction energy between the ligand and protein more than compensates for the unfavorable free energy cost of partially desolvating the ligand upon binding. Some of the effects of protein flexibility and thermal motions on charging the peptide in the solvated complex are also considered. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 591–607, 2001  相似文献   

11.
Analysis of the energetics of small molecule ligand-protein, ligand-nucleic acid, and protein-nucleic acid interactions facilitates the quantitative understanding of molecular interactions that regulate the function and conformation of proteins. It has also been extensively used for ranking potential new ligands in virtual drug screening. We developed a Web-based software, PEARLS (Program for Energetic Analysis of Ligand-Receptor Systems), for computing interaction energies of ligand-protein, ligand-nucleic acid, protein-nucleic acid, and ligand-protein-nucleic acid complexes from their 3D structures. AMBER molecular force field, Morse potential, and empirical energy functions are used to compute the van der Waals, electrostatic, hydrogen bond, metal-ligand bonding, and water-mediated hydrogen bond energies between the binding molecules. The change in the solvation free energy of molecular binding is estimated by using an empirical solvation free energy model. Contribution from ligand conformational entropy change is also estimated by a simple model. The computed free energy for a number of PDB ligand-receptor complexes were studied and compared to experimental binding affinity. A substantial degree of correlation between the computed free energy and experimental binding affinity was found, which suggests that PEARLS may be useful in facilitating energetic analysis of ligand-protein, ligand-nucleic acid, and protein-nucleic acid interactions. PEARLS can be accessed at http://ang.cz3.nus.edu.sg/cgi-bin/prog/rune.pl.  相似文献   

12.
Summary Proteins could be used to carry and deliver small compounds. As a tool for designing ligand binding sites in protein cores, a three-step virtual screening method is presented that has been optimised using existing data on T4 lysozyme complexes and tested in a newly engineered cavity in flavodoxin. The method can pinpoint, in large databases, ligands of specific protein cavities. In the first step, physico-chemical filters are used to screen the library and discard a majority of compounds. In the second step, a flexible, fast docking procedure is used to score and select a smaller number of compounds as potential binders. In the third step, a finer method is used to dock promising molecules of the hit list into the protein cavity, and an optimised free energy function allows discarding the few false positives by calculating the affinity of the modelled complexes. To demonstrate the portability of the method, several cavities have been designed and engineered in the flavodoxin from Anabaena PCC 7119, and the W66F/L44A double mutant has been selected as a suitable host protein. The NCI database has then been screened for potential binders, and the binding to the engineered cavity of five promising compounds and three tentative non-binders has been experimentally tested by thermal up-shift assays and spectroscopic titrations. The five tentative binders (some apolar and some polar), unlike the three tentative non-binders, are shown to bind to the host mutant and, importantly, not to bind to the wild type protein. The three-step virtual screening method developed can thus be used to identify ligands of buried protein cavities. We anticipate that the method could also be used, in a reverse manner, to identify natural or engineerable protein cavities for the hosting of ligands of interest.  相似文献   

13.
Implicit solvent models are increasingly popular for estimating aqueous solvation (hydration) free energies in molecular simulations and other applications. In many cases, parameters for these models are derived to reproduce experimental values for small molecule hydration free energies. Often, these hydration free energies are computed for a single solute conformation, neglecting solute conformational changes upon solvation. Here, we incorporate these effects using alchemical free energy methods. We find significant errors when hydration free energies are estimated using only a single solute conformation, even for relatively small, simple, rigid solutes. For example, we find conformational entropy (TDeltaS) changes of up to 2.3 kcal/mol upon hydration. Interestingly, these changes in conformational entropy correlate poorly (R2 = 0.03) with the number of rotatable bonds. The present study illustrates that implicit solvent modeling can be improved by eliminating the approximation that solutes are rigid.  相似文献   

14.
BEDAM calculations are described to predict the free energies of binding of a series of anaesthetic drugs to a recently characterized acyclic cucurbituril host. The modeling predictions, conducted as part of the SAMPL3 host-guest affinity blind challenge, are generally in good quantitative agreement with the experimental measurements. The correlation coefficient between computed and measured binding free energies is 70% with high statistical significance. Multiple conformational stereoisomers and protonation states of the guests have been considered. Better agreement is obtained with high statistical confidence under acidic modeling conditions. It is shown that this level of quantitative agreement could have not been reached without taking into account reorganization energy and configurational entropy effects. Extensive conformational variability of the host, the guests and their complexes is observed in the simulations, affecting binding free energy estimates and structural predictions. A conformational reservoir technique is introduced as part of the parallel Hamiltonian replica exchange molecular dynamics BEDAM protocol to fully capture conformational variability. It is shown that these advanced computational strategies lead to converged free energy estimates for these systems, offering the prospect of utilizing host-guest binding free energy data for force field validation and development.  相似文献   

15.
We present a binding free energy function that consists of force field terms supplemented by solvation terms. We used this function to calibrate the solvation model along with the binding interaction terms in a self-consistent manner. The motivation for this approach was that the solute dielectric-constant dependence of calculated hydration gas-to-water transfer free energies is markedly different from that of binding free energies (J. Comput. Chem. 2003, 24, 954). Hence, we sought to calibrate directly the solvation terms in the context of a binding calculation. The five parameters of the model were systematically scanned to best reproduce the absolute binding free energies for a set of 99 protein-ligand complexes. We obtained a mean unsigned error of 1.29 kcal/mol for the predicted absolute binding affinity in a parameter space that was fairly shallow near the optimum. The lowest errors were obtained with solute dielectric values of Din = 20 or higher and scaling of the intermolecular van der Waals interaction energy by factors ranging from 0.03 to 0.15. The high apparent Din and strong van der Waals scaling may reflect the anticorrelation of the change in solvated potential energy and configurational entropy, that is, enthalpy-entropy compensation in ligand binding (Biophys. J. 2004, 87, 3035-3049). Five variations of preparing the protein-ligand data set were explored in order to examine the effect of energy refinement and the presence of bound water on the calculated results. We find that retaining water in the final protein structure used for calculating the binding free energy is not necessary to obtain good results; that is the continuum solvation model is sufficient. Virtual screening enrichment studies on estrogen receptor and thymidine kinase showed a good ability of the binding free energy function to recover true hits in a collection of decoys.  相似文献   

16.
We present the first application of the mining minima algorithm to protein-small molecule binding. This end-point approach use an empirical force field and implicit solvent models, treats the protein binding-site as fully flexible and estimates free energies as sums over local energy wells. The calculations are found to yield encouraging agreement with experiment for three sets of HIV-1protease inhibitors and a set of phosphodiesterase 10a inhibitors. The contributions of various aspects of the model to its accuracy are examined, and the Poisson-Boltzmann correction is found to be the most critical. Interestingly, the computed changes in configurational entropy upon binding fall roughly along the same entropy-energy correlation previously observed for smaller host-guest systems. Strengths and weaknesses of the method are discussed, as are the prospects for enhancing accuracy and speed.  相似文献   

17.
Continuum solvation methods are frequently used to increase the efficiency of computational methods to estimate free energies. In this paper, we have evaluated how well such methods estimate the nonpolar solvation free-energy change when a ligand binds to a protein. Three different continuum methods at various levels of approximation were considered, viz., the polarized continuum model (PCM), a method based on cavity and dispersion terms (CD), and a method based on a linear relation to the solvent-accessible surface area (SASA). Formally rigorous double-decoupling thermodynamic integration was used as a benchmark for the continuum methods. We have studied four protein-ligand complexes with binding sites of varying solvent exposure, namely the binding of phenol to ferritin, a biotin analogue to avidin, 2-aminobenzimidazole to trypsin, and a substituted galactoside to galectin-3. For ferritin and avidin, which have relatively hidden binding sites, rather accurate nonpolar solvation free energies could be obtained with the continuum methods if the binding site is prohibited to be filled by continuum water in the unbound state, even though the simulations and experiments show that the ligand replaces several water molecules upon binding. For the more solvent exposed binding sites of trypsin and galectin-3, no accurate continuum estimates could be obtained, even if the binding site was allowed or prohibited to be filled by continuum water. This shows that continuum methods fail to give accurate free energies on a wide range of systems with varying solvent exposure because they lack a microscopic picture of binding-site hydration as well as information about the entropy of water molecules that are in the binding site before the ligand binds. Consequently, binding affinity estimates based upon continuum solvation methods will give absolute binding energies that may differ by up to 200 kJ/mol depending on the method used. Moreover, even relative energies between ligands with the same scaffold may differ by up to 75 kJ/mol. We have tried to improve the continuum solvation methods by adding information about the solvent exposure of the binding site or the hydration of the binding site, and the results are promising at least for this small set of complexes.  相似文献   

18.
We present a method to identify small molecule ligand binding sites and poses within a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand to an unphysical end state where the ligand does not interact with the protein. As replicas explore the space of Hamiltonians interpolating between these states, the ligand can rapidly escape local minima and explore potential binding sites. Geometric restraints keep the ligands from leaving the vicinity of the protein and an alchemical pathway designed to increase phase space overlap between intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the Hamiltonian exchange framework, we can also extract binding free energy estimates for all putative binding sites. We present results of this methodology applied to the T4 lysozyme L99A model system for three known ligands and one non-binder as a control, using an implicit solvent. We find that our methodology identifies known crystallographic binding sites consistently and accurately for the small number of ligands considered here and gives free energies consistent with experiment. We are also able to analyze the contribution of individual binding sites to the overall binding affinity. Our methodology points to near term potential applications in early-stage structure-guided drug discovery.  相似文献   

19.
Free energy calculations are increasingly being used to estimate absolute and relative binding free energies of ligands to proteins. However, computed free energies often appear to depend on the initial protein conformation, indicating incomplete sampling. This is especially true when proteins can change conformation on ligand binding, as free energies associated with these conformational changes are either ignored or assumed to be included by virtue of the sampling performed in the calculation. Here, we show that, in a model protein system (a designed binding site in T4 Lysozyme), conformational changes can make a difference of several kcal/mol in computed binding free energies, and that they are neglected in computed binding free energies if the system remains kinetically trapped in a particular metastable state on simulation timescales. We introduce a general "confine-and-release" framework for free energy calculations that accounts for these free energies of conformational change. We illustrate its use in this model system by demonstrating that an umbrella sampling protocol can obtain converged binding free energies that are independent of the starting protein structure and include these conformational change free energies.  相似文献   

20.
The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号