首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider a quantum system S weakly interacting with a very large but finite system B called the heat bath, and suppose that the composite SB is in a pure state Ψ with participating energies between E and E+δ with small δ. Then, it is known that for most Ψ the reduced density matrix of S is (approximately) equal to the canonical density matrix. That is, the reduced density matrix is universal in the sense that it depends only on S’s Hamiltonian and the temperature but not on B’s Hamiltonian, on the interaction Hamiltonian, or on the details of Ψ. It has also been pointed out that S can also be attributed a random wave function ψ whose probability distribution is universal in the same sense. This distribution is known as the “Scrooge measure” or “Gaussian adjusted projected (GAP) measure”; we regard it as the thermal equilibrium distribution of wave functions. The relevant concept of the wave function of a subsystem is known as the “conditional wave function.” In this paper, we develop analogous considerations for particles with spin. One can either use some kind of conditional wave function or, more naturally, the “conditional density matrix,” which is in general different from the reduced density matrix. We ask what the thermal equilibrium distribution of the conditional density matrix is, and find the answer that for most Ψ the conditional density matrix is (approximately) deterministic, in fact (approximately) equal to the canonical density matrix.  相似文献   

2.
We review the properties of supersymmetric quantum mechanics for a class of models proposed by Witten. Using both Hamiltonian and path integral formulations, we give general conditions for which supersymmetry is broken (unbroken) by quantum fluctuations. The spectrum of states is discussed, and a virial theorem is derived for the energy. We also show that the euclidean path integral for supersymmetric quantum mechanics is equivalent to a classical stochastic process when the supersymmetry is unbroken (E0 = 0). By solving a Fokker-Planck equation for the classical probability distribution, we find Pc(y) is identical to |Ψ0(y)|2 in the quantum theory.  相似文献   

3.
A relativistic one-particle, quantum theory for spin-zero particles is constructed uponL 2(x, ct), resulting in a positive definite spacetime probability density. A generalized Schrödinger equation having a Hermitian HamiltonianH onL 2(x, ct) for an arbitrary four-vector potential is derived. In this formalism the rest mass is an observable and a scalar particle is described by a wave packet that is a superposition of mass states. The requirements of macroscopic causality are shown to be satisfied by the most probable trajectory of a free tardyon and a nontrivial framework for charged and neutral particles is provided. The Klein paradox is resolved and a link to the free particle field operators of quantum field theory is established. A charged particle interacting with a static magnetic field is discussed as an example of the formalism.  相似文献   

4.
Moncy V. John 《Annals of Physics》2010,325(10):2132-2139
It is shown that a normalisable probability density can be defined for the entire complex plane in the modified de Broglie-Bohm quantum mechanics, which gives complex quantum trajectories. This work is in continuation of a previous one that defined a conserved probability for most of the regions in the complex space in terms of a trajectory integral, indicating a dynamical origin of quantum probability. There it was also shown that the quantum trajectories obtained are the same characteristic curves that propagate information about the conserved probability density. Though the probability density we now adopt for those regions left out in the previous work is not conserved locally, the net source of probability for such regions is seen to be zero in the example considered, allowing to make the total probability conserved. The new combined probability density agrees with the Born’s probability everywhere on the real line, as required. A major fall out of the present scheme is that it explains why in the classical limit the imaginary parts of trajectories are not observed even indirectly and particles are confined close to the real line.  相似文献   

5.
We propose a generalized statistical bootstrap equation for the generating functional of the fireball decay spectra which includes the bootstrap of the hadronic mass spectrum. In the form of an integral representation a solution is given for some n-particle distributions as well as multiplicity moments in the case of identical particles. Within this formalism we are able to discuss decay-chain end effects and to treat quantum number conservation explicity. The general equation is approximated by a simpler bootstrap equation for the linear decay chain with quantum-number conservation. An asymptotic solution for the single particle distributions according to this equation is discussed.  相似文献   

6.
Yong Xu  Huiqing Zhang  Wei Xu 《Physica A》2007,384(2):259-272
This paper is to continue our study on complex beam-beam interaction models in particle accelerators with random excitations Y. Xu, W. Xu, G.M. Mahmoud, On a complex beam-beam interaction model with random forcing [Physica A 336 (2004) 347-360]. The random noise is taken as the form of exponentially correlated Gaussian colored noise, and the transition probability density function is obtained in terms of a perturbation expansion of the parameter. Then the method of stochastic averaging based on perturbation technique is used to derive a Fokker-Planck equation for the transition probability density function. The solvability condition and the general transforms using the method of characteristics are proposed to obtain the approximate expressions of probability density function to order ε.Also the exact stationary probability density and the first and second moments of the amplitude are obtained, and one can find when the correlation time equals to zero, the result is identical to that derived from the Stratonovich-Khasminskii theorem for the same model under a broad-band excitation in our previous work.  相似文献   

7.
The lattice Boltzmann method is a discrete representation of the Boltzmann transport equation that has been employed for modeling transport of particles of different nature. In the present work, we describe the lattice Boltzmann methodology and implementation techniques for the phonon transport modeling in crystalline materials. We show that some phonon physical properties, e.g., mean free path and group velocity, should be corrected to their effective values for one- and two-dimensional simulations, if one uses the isotropic approximation. We find that use of the D2Q9 lattice for phonon transport leads to erroneous results in transient ballistic simulations, and the D2Q7 lattice should be employed for two-dimensional simulations. Furthermore, we show that at the ballistic regime, the effect of direction discretization becomes apparent in two dimensions, regardless of the lattice used. Numerical methodology, lattice structure, and implementation of initial and different boundary conditions for the D2Q7 lattice are discussed in detail.  相似文献   

8.
Marius Grigorescu 《Physica A》2008,387(26):6497-6504
Probability waves in the configuration space are associated with coherent solutions of the classical Liouville or Fokker-Planck equations. Distributions localized in the momentum space provide action waves, described by the probability density and the generating function of the Hamilton-Jacobi theory. It is shown that by introducing a minimum distance in the coordinate space, the action distributions aquire the phase-space dispersion specific to the quantum objects. At finite temperature, probability density waves propagating with the sound velocity can arise as nonstationary solutions of the classical Fokker-Planck equation. The results suggest that in a system of quantum Brownian particles, a transition from complex to real probability waves could be observed.  相似文献   

9.
In the recent publication (E. Kanzieper and G. Akemann in Phys. Rev. Lett. 95:230201, 2005), an exact solution was reported for the probability p n,k to find exactly k real eigenvalues in the spectrum of an n×n real asymmetric matrix drawn at random from Ginibre’s Orthogonal Ensemble (GinOE). In the present paper, we offer a detailed derivation of the above result by concentrating on the proof of the Pfaffian integration theorem, the key ingredient of our analysis of the statistics of real eigenvalues in the GinOE. We also initiate a study of the correlations of complex eigenvalues and derive a formula for the joint probability density function of all complex eigenvalues of a GinOE matrix restricted to have exactly k real eigenvalues. In the particular case of k=0, all correlation functions of complex eigenvalues are determined.  相似文献   

10.
The arbitrary Lagrangian-Eulerian rate equation is derived for the complex-extended Born probability density. This equation describes the rate of change in the density along an arbitrary path in the complex plane. Several special cases for the rate equation depending on the grid velocity are discussed. This study provides a further understanding of the probability density in the complex plane.  相似文献   

11.
12.
It is shown that the space P(Γs) of Γs-distribution functions ?(q, p) (Husimi transforms) can be described without reference to any conventional representation of the density operator ?. A Liouville-type differential equation governing the free time-evolution of ?t(q, p) is derived and solved explicitly; the time dependence of this solution supports the thesis that ?(q, p) is a bona fide probability density observable with optimally accurate apparatus for the simultaneous measurement of position and momentum. Liouville-type equations are derived also for the case when local interactions described by analytic potentials are present. Probability currents corresponding to ?(q, p) are defined and it is shown that they obey a continuity equation at space-time points. Reduced Γs-distribution functions are defined and it is shown that they obey a BBGKY hierarchy of equations. A Brownian-motion experimental test of the underlying theory of measurement is suggested.  相似文献   

13.
14.
The equation governing the conditional relative velocity distribution of an equilibrium one component plasma at distances smaller than the interparticle distance is derived from elementary principles of classical dynamics and probability, the latter defined from the temporal point of view. It becomes obvious that in accordance with todays accepted views the maxwellian velocity distribution satisfies the above equation. Using this result it is also shown that the conditional number density has the form n(r) = n0exp(-e2/rkBT).  相似文献   

15.
We consider the evolution of an incompressible two-dimensional perfect fluid as the boundary of its domain is deformed in a prescribed fashion. The flow is taken to be initially steady, and the boundary deformation is assumed to be slow compared to the fluid motion. The Eulerian flow is found to remain approximately steady throughout the evolution. At leading order, the velocity field depends instantaneously on the shape of the domain boundary, and it is determined by the steadiness and vorticity-preservation conditions. This is made explicit by reformulating the problem in terms of an area-preserving diffeomorphism gΛ which transports the vorticity. The first-order correction to the velocity field is linear in the boundary velocity, and we show how it can be computed from the time derivative of gΛ.The evolution of the Lagrangian position of fluid particles is also examined. Thanks to vorticity conservation, this position can be specified by an angle-like coordinate along vorticity contours. An evolution equation for this angle is derived, and the net change in angle resulting from a cyclic deformation of the domain boundary is calculated. This includes a geometric contribution which can be expressed as the integral of a certain curvature over the interior of the circuit that is traced by the parameters defining the deforming boundary.A perturbation approach using Lie series is developed for the computation of both the Eulerian flow and geometric angle for small deformations of the boundary. Explicit results are presented for the evolution of nearly axisymmetric flows in slightly deformed discs.  相似文献   

16.
M. Razavy 《Physica A》1976,84(3):591-602
The present work consist of two parts: In the first part we apply the method of quasilinearization to the differential equation describing the time development of the quantum-mechanical probability density. In this way we derive the master equation without resorting to perturbation theory. In the second part of the paper, for a general form of the master equation which is an integro-differential equation, we test the accuracy of the Fokker-Planck approximation with the help of a solvable model. Then we study an alternative way of reducing the integro-differential equation to a partial differential equation. By expanding the transition probability W(q, q′), and the distribution function in terms of a complete set of functions, we show that for certain forms of W(q, q′), the master equation can be transformed exactly to partial differential equations of finite order.  相似文献   

17.
Pierre-Henri Chavanis 《Physica A》2008,387(23):5716-5740
We developed a theory of fluctuations for Brownian systems with weak long-range interactions. For these systems, there exists a critical point separating a homogeneous phase from an inhomogeneous phase. Starting from the stochastic Smoluchowski equation governing the evolution of the fluctuating density field of Brownian particles, we determine the expression of the correlation function of the density fluctuations around a spatially homogeneous equilibrium distribution. In the stable regime, we find that the temporal correlation function of the Fourier components of density fluctuations decays exponentially rapidly, with the same rate as the one characterizing the damping of a perturbation governed by the deterministic mean field Smoluchowski equation (without noise). On the other hand, the amplitude of the spatial correlation function in Fourier space diverges at the critical point T=Tc (or at the instability threshold k=km) implying that the mean field approximation breaks down close to the critical point, and that the phase transition from the homogeneous phase to the inhomogeneous phase occurs sooner. By contrast, the correlations of the velocity fluctuations remain finite at the critical point (or at the instability threshold). We give explicit examples for the Brownian Mean Field (BMF) model and for Brownian particles interacting via the gravitational potential and via the attractive Yukawa potential. We also introduce a stochastic model of chemotaxis for bacterial populations generalizing the deterministic mean field Keller-Segel model by taking into account fluctuations and memory effects.  相似文献   

18.
Using a bootstrap model of inclusive spectra we derive an integral equation satisfied by the generating function for multiplicity distributions. The (semi-asymptotic) solution of this equations has the form Ψ(λ, s) = Ψ(λ, s0)(s/s0)b(λ) where s is the usual energy variable and b(λ) satisfies an eigenvalue equation and is completely determined by the leading particle distribution. Closed formulae for the binomial moments and for correlation coefficients are also given, and in addition we discuss some general features of the bootstrap model. As a phenomenological application we discuss the rate of variation with energy of multiplicity moments. Our results are expected to be representative for multiperipheral-like models.  相似文献   

19.
提出求解位置-速度相空间中高维两相流PDF(probability density function)方程的有限分析方法,将位置-速度相空间颗粒PDF方程约化到速度空间,并解析求解,颗粒的位置PDF用轨道方法求解.对壁面射流两相流动进行数值模拟,并与颗粒雷诺应力轨道方法进行比较计算,结果优于颗粒雷诺应力轨道方法.  相似文献   

20.
Nonrelativistic quantum mechanics can be derived from real Markov diffusion processes by extending the concept of probability measure to the complex domain. This appears as the only natural way of introducing formally classical probabilistic concepts into quantum mechanics. To every quantum state there is a corresponding complex Fokker-Planck equation. The particle drift is conditioned by an auxiliary equation which is obtained through stochastic energy conservation; the logarithmic transform of this equation is the Schrödinger equation. To every quantum mechanical operator there is a stochastic process; the replacement of operators by processes leads to all the well-known results of quantum mechanics, using stochastic calculus instead of formal quantum rules. Comparison is made with the classical stochastic approaches and the Feynman path integral formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号