首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用改进的SHTB实验设备,对316L和304不锈钢焊接结构的动态力学性能进行了实验.提出了一种适用于焊接结构件的新型的SHTB夹持装置,并在应变率约103 s-1、温度为25~500℃的环境下获得了焊接结构件动态应力-应变曲线.研究表明:随应变率的升高,结构件的屈服强度和抗拉强度随应变率的增大而增大,随温度的升高而降...  相似文献   

2.
冲击载荷下猪后腿肌肉的横向同性本构模型   总被引:1,自引:0,他引:1  
基于纤维增强复合材料连续介质力学理论及粘弹性理论,提出了猪后腿肌肉的率相关本构模型。 通过拟合以往研究中猪后腿肌肉的SHPB和SHTB实验应力应变曲线,确定了本构模型的相关参数。结果 表明:提出的本构模型既能描述猪后腿肌肉沿纤维方向的动态压缩力学性能又能描述其动态拉伸性能,理论 模型与实验模型有较好的一致性。该结果可为安全防护数值模拟提供一定的理论依据。  相似文献   

3.
Al2O3陶瓷材料应变率相关的动态本构关系研究   总被引:8,自引:0,他引:8  
采用改进的SHPB实验方法对Al2O3陶瓷的动态力学性能进行了研究,得到了材料在较高应变率范围内的动态应力应变曲线。结果表明,Al2O3陶瓷为弹脆性材料,其动态应力应变呈非线性关系,在较高的应变率范围内,陶瓷材料的动态应力应变关系是应变率相关的;材料的初始弹性模量、破坏应力、破坏应变值随应变率的增大而增大。基于损伤力学的基本理论,给出了Al2O3陶瓷的一维损伤型线性弹脆性本构模型。根据SHPB实验结果确定模型中的参数,得到了Al2O3陶瓷应变率相关的损伤型动态本构方程。  相似文献   

4.
采用?75 mm大口径SHPB系统进行了钢纤维体积率为0%、0.75%、1.5%三种混凝土材料动态性能实验,得出了不同钢纤维含量、不同应变率下的材料应力-应变关系曲线,实验结果表明:随着纤维含量及应变率的增加,钢纤维混凝土材料的峰值应变、峰值应力都随之提高,并在峰值应力之后出现应力的应变软化现象。以此实验结果为基础,提出了一种依赖于应变和应变率相关函数的新型非线性黏塑性动态本构关系,并通过对实验曲线的三步逐次最小二乘优选模拟,得到了相应的材料参数。结果表明,该本构关系对实验数据的模拟效果较好。  相似文献   

5.
运用Holmquist-Johnson-Cook (HJC) 本构模型对混凝土的SHPB实验进行了数值模拟。解决了罚函数算法中罚因子合理数值的选取问题。利用模拟结果按SHPB两波法重构了试样的应力应变曲线。分析了混凝土材料的SHPB实验得到应力应变曲线的有效段范围和各段的力学规律。通过比较实际混凝土材料SHPB实验和数值模拟得到的应力应变曲线,发现两者体现的力学行为很相似,即HJC模型是描述该类材料的一种合理本构模型。模拟了试样不同平行度公差下的SHPB实验,发现在一定应变率范围内其影响程度远大于试样应力(应变)不均匀性。  相似文献   

6.
为了研究不同应力状态和应变率条件下镁合金MB2的拉伸破坏行为,利用材料试验机和分离式Hopkinson拉杆(SHTB),对镁合金MB2的光滑及缺口圆柱试件进行了动静态拉伸加载;拟合得到了镁合金MB2的动静态拉伸本构关系,建立了其修正的Johnson-Cook失效破坏准则,并对不同试件的拉伸破坏行为进行了数值模拟;利用SEM对宏观破坏模式对应的微观损伤机理进行了分析。结果表明,随着应力三轴度的增加,镁合金MB2的等效破坏应变先增大后减小,宏观破坏模式由剪切转为正拉断,微观损伤机制由混合断裂转变为韧窝断裂;而随着应变率的增加,等效破坏应变不断减小,破坏模式不发生改变。Johnson-Cook本构关系和修正后的Johnson-Cook失效破坏准则能较好地拟合动态静态拉伸实验结果并预测不同试件的杯锥形破坏特征。  相似文献   

7.
支旭东  张荣  林莉  范峰 《爆炸与冲击》2018,38(3):596-602
采用万能材料试验机和分离式霍普金森拉杆(SHTB)装置,对我国钢结构建筑中最常用的Q235B钢进行准静态拉伸实验、高温拉伸实验和动态拉伸实验。基于实验数据对LS-DYNA常用的3种动态材料模型Cowper-Symonds本构模型、Johnson-Cook本构模型、Zerilli-Armstrong本构模型进行了拟合,通过Taylor杆实验对3种本构模型进行验证和对比分析。结果表明:Q235B钢具有较为明显的高温软化和应变率强化效应;Cowper-Symonds本构模型可以较好地适用于工程领域低速碰撞的模拟;Johnson-Cook本构模型可适用于较大应变率范围内的模拟;不推荐Zerilli-Armstrong本构模型在工程低速碰撞领域中使用。  相似文献   

8.
利用万能实验机和Hopkinson杆装置测试了Al基含能结构材料在不同温度下的静动态力学性能,分析实验结果得到了温度效应和应变率效应对材料力学性能的影响及该合金的Johnson-Cook本构模型参数.结合二维数字图像相关(DIC)方法,研究了Al基含能结构材料的失效应变与应力三轴度及温度之间的关系,得到了该合金的Johnson-Cook失效模型参数.通过平面撞击实验获得了Al基含能结构材料粒子速度和应力波波速之间的经验线性关系和该合金的Grüneisen系数.基于实验获得的材料本构关系和状态方程参数,完成了Al基含能结构材料超高速撞击多层间隔薄钢板的数值模拟,结果表明,数值模拟中靶板的毁伤模式、破孔直径及弹坑主要散布区和实验结果吻合.  相似文献   

9.
提出了一种新的基于Hopkinson杆实验技术的在102~103s-1高应变率下实现压剪复合加载的实验装置,并给出了相应的理论分析和数值模拟。为了获取材料在复杂应力下的本构关系,借助斜飞片冲击实验的思想,对Hopkinson杆进行改造,将入射杆的末端改进为截锥形,以便在试样中同时产生压缩和剪切应力。利用有限元分析软件LS-DYNA对试样中的应力波传播进行模拟计算,并利用改进装置进行了初步实验。计算和分析结果表明,利用所设计的装置可以实现对试样的动态压剪复合加载,获得材料在高应变率复杂应力加载下的本构响应,进而建立材料在复杂应力状态下本构行为的描述。  相似文献   

10.
双基推进剂的高应变率力学特性及其含损伤ZWT本构   总被引:1,自引:0,他引:1  
为了解双基推进剂在冲击载荷下的力学特性及本构行为,利用材料试验机和分离式霍普金森压杆(SHPB)对双基推进剂进行了单轴压缩实验,并对实验数据的有效性进行了检验。用二波法对实验数据进行处理,得到了双基推进剂的应力应变曲线。实验结果表明:双基推进剂具有明显的应变率相关性,动态下屈服应力与静态下相比明显提高,且屈服应力表现为应变率对数的双线性关系;双基推进剂屈服应变表现为延脆转换特性,在低应变率下表现为延展性,高应变率下表现为冲击脆化特性。利用含损伤朱王唐(ZWT)本构模型对实验结果进行了拟合,得到了模型中的本构参数,并对损伤因子项进行了分析。通过模型预测曲线与实验曲线的对比,发现含损伤ZWT本构能较好地描述双基推进剂在0~0.14应变范围内的力学特性。  相似文献   

11.
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s?1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.  相似文献   

12.
奥氏体不锈钢高温循环棘轮行为的实验研究   总被引:1,自引:0,他引:1  
对两种不锈钢材料(316L和304)进行了高温应力控制下的系统循环试验。对该类材料在应力循环下的平均应力、应力幅值及其历史对循环蠕变(棘轮效应)的影响进行了分析,同时也分析了环境温度的变化以及先前应变循环对后继应力循环的棘轮行为的影响。研究表明,两种不锈钢材料在高温非对称循环下的单轴棘轮行为基本相同,不但依赖于当前温度和加载状态,而且还依赖于先前加载历史。研究得到了不锈钢材料高温单轴循环棘轮行为的一些有意义的结果。  相似文献   

13.
A thermal fatigue device––called SPLASH––similar to the facility developed by Marsh [Fatigue crack initiation and propagation in stainless steels subjected to thermal cycling, International Conference on Mechanical Behaviour and Nuclear Applications of Stainless Steels at Elevated Temperature, 1981] has been built in CEA/SRMA in 1985. Since then, it was used mostly on austenitic stainless steels to assess the initiation and growth of thermal fatigue crack networks. In 1998, a leak appeared in an auxiliary loop of the primary circuit of a pressurized water nuclear plant in Civaux (France). Thermal fatigue was suspected and studies began on AISI 304 L type austenitic stainless steel. They were eventually compared to results obtained earlier on AISI 316 L(N). First, the initiation conditions were determined and the damage before initiation was qualitatively observed. Then, some crack networks parameters were chosen and quantitatively determined by image analysis. This part of the study was done at the surface, during crack growth, and at the end of the tests, in depth. Finally, the stability of the crack networks obtained by thermal fatigue was tested under isothermal load controlled four point bending fatigue test, and some conclusions were drawn on the mechanisms of propagating crack selection.  相似文献   

14.
An experimental investigation was performed to study a specific axial crush configuration response of steel, square box components under quasi-static testing conditions. For a specific cross-sectional geometry/fabrication process, test specimens were obtained from commercially produced, welded tube lengths of ASTM A36 and ASTM A513 Type 1 plain low-carbon steels and AISI 316 and AISI 304 austenitic stainless steels. Removable grooved caps were used to constrain tube test specimen ends, and collapse initiators in the form of shallow machined grooves were used to control the initial transverse deformations of the test specimen sidewalls. The progressive plastic deformation for all of the test specimens was restricted to the prototype configuration response (fold formation process and the corresponding axial load-axial displacement curve shape) of the symmetric axial crush mode. Crush characteristics were evaluated and, for each material type, observed differences were less than 7% for maximum and minimum load magnitudes and less than 2% for energy absorption, displacement, and mean load quantities in both the initial phase and the secondary folding phase cycles. Overall, results of the study indicate that for a significant range of material strengths, a controlled and repeatable energy absorption process can be obtained for commercially produced steel box components undergoing symmetric axial crush response.  相似文献   

15.
Metastable, type FCC metals and alloys are often applied at extremely low temperatures because of their excellent ductility over the whole temperature range practically down to the absolute zero. These materials (like stainless steels) are frequently characterised by the low stacking fault energy and undergo at low temperatures the plastic strain induced transformation from the parent phase “γ” to the secondary phase “α′”. The phase transformation process consists in creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase in thermodynamic equilibrium. The evolution of material micro-structure induces strain hardening related to interaction of dislocations with the inclusions and to increase of equivalent tangent stiffness as a result of evolving proportions of both phases, each characterised by different stiffness. The corresponding hardening model is based on micromechanics and on the Hill concept (1965) supplemented by Mori and Tanaka (1973) homogenisation scheme. Identification of parameters of the constitutive model has been carried out for 304L and 316L stainless steels, based on the available experimental data. The model has been used to describe phase transformation in rectangular beams, circular rods and thin-walled shells subjected to cyclic loads at cryogenic temperatures. Moreover, non-proportional loading paths were studied. A new feature of structures made of metastable materials has been observed. As soon as the γ ? α′ phase transformation begins, the evolution of material micro-structure accelerates the process of adaptation of structural member to cyclic loads and enhances therefore its fatigue life when compared to classical elastic–plastic structures.  相似文献   

16.
用AISI304钢与Cr-Mn-N双相不锈钢进行了磨损和腐蚀磨损试验,测定了磨损和磨蚀的体积损失随载荷及接触应务的变化关系及磨痕的显微硬度,观察了磨痕形貌及Cr-Mn-N双相不锈钢形变引起的位错滑移及增殖。结果表明,双相Cr-Mn-N不锈钢具有较强的形变强化能力,良好的耐磨性和耐腐蚀性。在不降低合金耐蚀性的前提下,利用合金本身的形变强化能力提高其耐磨蚀性能,是一种开发磨蚀合金的有效途径。  相似文献   

17.
Some novel discriminating multiaxial cyclic strain paths with incremental and random sequences were used to investigate cyclic deformation behavior of materials with low and high sensitivity to non-proportional loadings. Tubular specimens made of 1050 QT steel with no non-proportional hardening and 304L stainless steel with significant non-proportional hardening were used. 1050 QT steel was found to exhibit very similar behavior under various multiaxial loading paths, whereas significant effects of loading sequence were observed for 304L stainless steel. In-phase cycles with a random sequence of axial-torsion cycles on an equivalent strain circle were found to cause cyclic hardening levels similar to 90° out-of-phase loading of 304L stainless steel. In contrast, straining with a small increment of axial-torsion on an equivalent strain circle results in higher stress than for in-phase loading of 304L stainless steel, but the level of hardening is lower than for 90° out-of-phase loading. Tanaka’s non-proportionality parameter coupled with a Armstrong–Fredrick incremental plasticity model, and Kanazawa et al.’s empirical formulation as a representative of such empirical models were used to predict the stabilized stress response of the two materials under variable amplitude axial-torsion strain paths. Consistent results between experimental observations and predictions were obtained by employing the Tanaka’s non-proportionality parameter. In contrast, the empirical model resulted in significant over-prediction of stresses for 304L stainless steel.  相似文献   

18.
Welded components suffer from high tensile residual stresses close to the weld beads. These stresses seem to be the origin of premature cracking which could result in a catastrophic rupture during operation and a reduction of the lifespan of these components. In this context, the Hydro-Québec’s Research Institute (IREQ) developed a technique of residual stresses relaxation by robotized hammer peening which makes it possible to release stresses close to surface and preserve the mechanical and dimensional properties of manufactured components. Robotized hammer peening was used to induce compressive residual stresses on initially stress free samples of austenitic stainless steel 304L. Hammer peening layers from one to nine were performed and the resulting residual stresses were evaluated thanks to the contour technique. Complete 2D residual stress fields on samples cross sections were obtained. The ability of hammer peening to relax residual stresses within welded plates was then quantified on austenitic stainless steel 304L plates welded with a 308 steel and hammer peened. These tests show the efficiency of hammer peening as a method to relax tensile residual stresses and induce compressive ones to a depth of a few millimetres. Process parameters were optimized such as the number of hammer peening layers to be applied to reduce processing time and maximization of the intensity and spatial distribution of the compressive residual stresses.  相似文献   

19.
表面纳米化对316L不锈钢低周疲劳性能的影响   总被引:1,自引:0,他引:1  
超声喷丸(USSP)处理工艺在316L不锈钢表面制备出了纳米表面晶层,对表面纳米化后和未表面纳米化的316L不锈钢试样进行对比拉拉低周疲劳试验,运用数理统计学的方法分析研究了表面纳米化处理对316L不锈钢的低周疲劳性能的影响,并就表面纳米化对疲劳性能的影响机理进行了初步分析探讨.研究结果表明,超声喷丸表面纳米化处理可以有效地提高316L不锈钢的低周疲劳寿命;超声喷丸处理在表面所形成的残余压应力、晶粒细化的纳米强化表层是疲劳寿命提高的主要原因.  相似文献   

20.
An integrated experimental technique was developed for high-rate mechanical characterization of 304L stainless steel at elevated temperatures by using a modified split Hopkinson pressure bar (SHPB). A sandwich structure consisting of two platens and the specimen in between was heated before mechanical loading while the bars were maintained at room temperature to eliminate the temperature gradient effect on the wave propagation in the bars. Upon contacting the cold bars, temperature gradients form in the platens, leaving the temperature in specimen constant and uniform. Pulse shaping techniques were employed to maintain constant strain-rate deformation and dynamic stress equilibrium in the specimen. Dynamic compressive stress-strain curves at elevated temperatures for the 304L stainless steel were obtained. To relate recrystallization to impact loading, a momentum trapping system was employed to apply a single loading on the specimen during one dynamic experiment. We also controlled the quenching time to study its effect on recrystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号