首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic absorption spectrum in the vapour state and in solution in different solvents in the region 3000–1900 Å and the fluorescence and phosphorescence emission spectra in ethanol or cyclohexane at 77 K have been studied for 2-fluoropyridine and analysed. Two systems of absorption band corresponding to the π→π* transition II and π→π* transition III have been observed and the excited state dipole moments have been determined from the solvent-induced shifts of the electronic absorption bands. The half-life of phosphorescence in cyclohexane at 77 K is found to be 3.5 s.  相似文献   

2.
The electronic absorption spectrum of 3-fluoropyridine in the vapour state and in solutions in different solvents in the region 3000-1900 Å has been measured and analysed. Three systems of absorption bands; n→π* transition I, π→π* transition II and π→π* transition III are identified. The oscillator strength of the absorption band systems due to the π→π* transition II and π→π* transition III and the excited state dipole moments associated with these transitions have been determined by the solvent-shift method.  相似文献   

3.
The ground state and excited state dipole moment of a series of alkyl substituted para-nitroaniline derivatives is reported. Ground state dipole moment was determined by the Debye-Guggenheim method and the excited state dipole moment was estimated using the solvatochromic method. For all molecules under investigation, the excited state dipole moment was found to be higher than the ground state dipole moment. The molecules exhibited positive solvatochromism.  相似文献   

4.
The u.v. absorption spectrum of 2,6-difluoropyridine in the region 41 000-34 000 cm−1 in the vapour state and in solution has been recorded and a vibronic analysis made. Only one system of bands arising from the π → π* transition has been observed and the 0,0 band is located at 37 840 cm−1 in the vapour-phase spectrum. The oscillator strength of the band system in solution and the dipole moment in the excited state associated with the transition were determined.  相似文献   

5.
Absorption and fluorescence spectra of some biologically active indole and tryptamine derivatives have been recorded at room temperature in solvents of different polarities. The interest in the photophysical properties of these molecules arises mainly from their utility in medicinal chemistry as neurotransmitter and hallucination/hallucinic agents. Excited-state dipole moments of these molecules have been estimated from solvent-dependent Stokes shift data using a solvatochromic method based on a microscopic solvent polarity parameter (ETN). All indoles show a substantial increase in the dipole moment upon excitation to the emitting state. These results are generally consistent with the Parametric Method 3 (PM3) calculations, and are found to be quite reliable in view of the fact that the correlation of the solvatochromic Stokes shifts with the microscopic solvent polarity parameter (ETN) is superior to that obtained using bulk solvent polarity functions.  相似文献   

6.
The absorption spectra and steady state fluorescence spectra of fluorenone have been obtained at room temperature for various concentrations in a series of non polar and polar solvents. The concentration effect shows two fluorescence bands, one at shorter wavelength due to monomer and another at longer wavelength due to excimer formation by triplet-triplet annihilation process. The excited state dipole moments of both monomer and dimer are calculated by the method of solvatochromism. A reasonable agreement has been observed between the values obtained by the method of solvatochromism and electrochromism.  相似文献   

7.
Reported here are measurements of the magnitude and orientation of the induced dipole moment that is produced when an indole molecule in its ground S(0) and electronically excited S(1) states is polarized by the attachment of a hydrogen bonded water molecule in the gas phase complex indole-H(2)O. For the complex, we find the permanent dipole moment values mu(IW)(S(0)) = 4.4 D and mu(IW)(S(1)) = 4.0 D, values that are substantially different from calculated values based on vector sums of the dipole moments of the component parts. From this result, we derive the induced dipole moment values mu(I) (*)(S(0)) = 0.7 D and mu(I) (*)(S(1)) = 0.5 D. The orientation of the induced moment also is significantly different in the two electronic states. These results are quantitatively reproduced by a purely electrostatic calculation based on ab initio values of multipole moments.  相似文献   

8.
The present note comments on several publications which appeared in different journals containing many inaccurate statements and lacking honest citations of basic papers dealing with the application of solvatochromism to determine excited state dipole moments.  相似文献   

9.
The dipole moments of several acyclic and cyclic ketene acetals have been determined in benzene solution at 293 K using the Halverstadt-Kumler method. For ketene dialkyl acetals (alkyl = Me, Et) the results point to a predominance of the s-cis,s-trans retamer, which disagrees with the conclusions drawn previously from 13C NMR chemical shift data, i.e. the s-cis,s-cis form is the more stable species. In the case of 2-methoxyfuran, the dipole moment measurements confirm the previous findings based on the 13C NMR spectra, viz the s-cis form is the predominating rotamer. The dipole moments and structures of some other ketene acetals are also discussed.  相似文献   

10.
The accuracy of dipole moments calculated from wave function methods based on second-order perturbation theory is investigated in the ground and electronically excited states. Results from the approximate coupled-cluster singles-and-doubles model, CC2, M?ller-Plesset perturbation theory, MP2, and the algebraic diagrammatic construction through second-order, ADC(2), are discussed together with the spin-component scaled and the scaled opposite-spin variants of these methods. The computed dipole moments show a very good correlation with data from high-resolution spectroscopy. Compared to the unscaled methods, the spin-component scaling increases the accuracy of the results and improves the robustness of the calculations. An accuracy about 0.2 to 0.1 D in the ground state and about 0.3 to 0.2 D in the electronically excited states can be achieved with these approaches.  相似文献   

11.
Ultra violet absorption spectra of o-methylacetophenone, o-fluoroacetophenone and o-hydroxyacetophenone solutions in different solvents are recorded in the region 200-350 nm at room temperature. Excited state dipole moments for three (pi* <-- pi) transitions of the benzene ring for solutions in non-polar and polar solvents are estimated using solvato-chromic shift method [Delta nu against f(epsilon, n)]. The results show that two types of shifts are observed red and blue shifts. The dipole moment values obtained on excitation by red shifted bands in non-polar solvents are much higher than their counterparts both in the ground state and those of the solutions in polar solvents. Those obtained on excitation by blue shifted bands have lower values than ground state, some with same direction and others of reverse direction in both non-polar and polar solvents.  相似文献   

12.
The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.  相似文献   

13.
[reaction: see text] Irradiation of 2- and 4-xanthone acetic acid in aqueous buffer (pH 7.4) leads to efficient (Phi = 0.67 and 0.64, respectively) photodecarboxylation to give the corresponding methyl products, consistent with an intermediate benzylic carbanion. Fluorescence and laser flash photolysis (LFP) studies suggest singlet state reactivity, which is unusual for aromatic ketones. 3-Xanthone acetic acid is photoinert under the same conditions. The results suggest that the reactive xanthone acetic acids are promising precursors for carbanion-mediated photocages.  相似文献   

14.
The absorption and fluorescence spectra of N-nonyl acridine orange are determined at room temperature (298 K) in cyclohexane, benzene, carbon tetrachloride, chloroform, chlorobenzene and dichloromethane. The ground state of dipole moment was obtained by impedance measurements using Guggenheim-Debeye's method. The experimental excited state dipole moment of N-nonyl acridine orange was determined using Bakhshiev's and Kawski-Chamma-Viallet's formulae and solvent polarity parameter proposed by Reichardt. These experimental results were completed with theoretical results using quantum chemical methods. The experimental (muexp=10.76 D) and theoretical (mucal=9.9 D) dipole moments in the ground and excited state (muexp*=14.56 D) were compared.  相似文献   

15.
The ultraviolet absorption spectrum in the region 300-190 nm in the vapour phase and in solution in different solvents, and the luminescence emission spectra in ethanol and cyclohexane at 77 K have been measured for 2-fluoro-5-chloropyridine and analysed. The molecule shows two systems of absorption bands corresponding to the π→π* transition II and π→π* transition III. The oscillator strength of the two systems of absorption bands in solutions and the excited state dipole moment in the 1π, π* state have been determined. The half-life of phosphorescence in cyclohexane is measured and found to be 3·6 s.  相似文献   

16.
The ground state (mu(g)) and excited state (mu(e)) dipole moments of 15 hemicyanine dyes were studied at room temperature. They were estimated from solvatochromic shifts of the absorption and the fluorescence spectra as function of the solvent dielectric constant (varepsilon) and refractive index (n). In this paper we applied the Stokes shift phenomena not only for the determination of the difference in the dipole moment of excited state and ground state, but to determine the value of polarizability alpha as well. The obtained results show that excited state dipole moments of hemicyanine dyes are in the range from 5 to 15 Debye, and the difference between the excited and ground state dipole moments vary from 1 to 7 Debye. The excited and ground state dipole moments difference (mu(e)-mu(g)) obtained for selected dyes are positive. It means that the excited states of the dyes under the study are more polar than the ground state ones. Additionally, the value of both polarizability (alpha) and the Onsager radius (a) of each investigated hemicyanine dye molecule are determined, and the ratio of alpha/a(3) for each dye were calculated, which oscillate from 0.29 to 5.21. The increase in dipole moment has been explained in terms of the nature of excited state and its resonance structure.  相似文献   

17.
18.
采用固体NMR实验方法研究了取代的三个杂氮硅三环羧酸化合物的结构,针对实验结果讨论了环上取代对化合物构型和配键的影响,以及硅和氮化学位移对环上取代的反映。  相似文献   

19.
Propagator methods provide a direct approach to energies and transition moments for (generalized) electronic excitations from the ground state, but they do not usually allow one to determine excited state wave functions and properties. Using a specific intermediate state representation (ISR) concept, we here show how this restriction can be overcome in the case of the algebraic-diagrammatic construction (ADC) propagator approach. In the ISR reformulation of the theory the basic ADC secular matrix is written as a representation of the Hamiltonian (or the shifted Hamiltonian) in terms of explicitly constructable states, referred to as intermediate (or ADC) states. Similar intermediate state representations can be derived for operators other than the Hamiltonian. Together with the ADC eigenvectors, the intermediate states give rise to an explicit formulation of the excited wave functions and allow one to calculate physical properties of excited states as well as transition moments for transitions between different excited states. As for the ground-state excitation energies and transition moments, the ADC excited state properties are size consistent so that the theory is suitable for applications to large systems. The established hierarchy of higher-order [ADC(n)] approximations, corresponding to systematic truncations of the IS configuration space and the perturbation-theoretical expansions of the ISR matrix elements, can readily be extended to the excited state properties. Explicit ISR matrix elements for arbitrary one-particle operators have been derived and coded at the second-order [ADC(2)] level of theory. As a first computational test of the method we have carried out ADC(2) calculations for singlet and triplet excited state dipole moments in H(2)O and HF, where comparison to full CI results can be made. The potential of the ADC(2) method is further demonstrated in an exploratory study of the excitation energies and dipole moments of the low-lying excited states of paranitroaniline. We find that four triplet states, T1-T4, and two singlet states, S1 and S2, lie (vertically) below the prominent charge transfer (CT) excitation, S3. The dipole moment of the S3 state (17.0D) is distinctly larger than that of the corresponding T3 triplet state (11.7D).  相似文献   

20.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of o-chlorophenoxy acetic acid (OCPAA) and p-chlorophenoxy acetic acids (PCPAA). The FT-IR and Fourier transform-Raman spectra of both the compounds was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-311++G(d,p) basis set and harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compounds were also performed at B3LYP/6-311++G(d,p) level of theory. A detailed interpretation of the infrared and Raman spectra of o-chloro and p-chlorophenoxy acetic acid is reported. The theoretical FT-IR spectrograms for the title molecules have been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号