首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of various triads composed of a linear array of two zinc porphyrins joined via an intervening bis(dipyrrinato)metal(II) complex are reported. The preparation exploits the facile complexation of dipyrrins with divalent metal ions to give bis(dipyrrinato)metal(II) complexes [abbreviated (dp)(2)M]. Copper(II) and palladium(II) chelates of dipyrrins (available by oxidation of dipyrromethanes) were prepared in 50-80% yield. A one-flask synthesis of bis(dipyrrinato)zinc(II) complexes was developed by oxidation of a dipyrromethane with DDQ or p-chloranil in the presence of Zn(OAc)(2).2H(2)O in THF ( approximately 80% yield). Three routes were developed for preparing porphyrin-dipyrrins: (1). Suzuki coupling of a boronate-substituted zinc porphyrin (ZnP) and bis[5-(4-iodophenyl)dipyrrinato]Pd(II) to give the (ZnP-dp)(2)Pd triad (50% yield), followed by selective demetalation of the (dp)(2)Pd unit by treatment with 1,4-dithiothreitol under neutral conditions (71% yield); (2). oxidation of a porphyrin-dipyrromethane with p-chloranil in the presence of Zn(OAc)(2).2H(2)O followed by chromatography on silica gel (71% yield); and (3). condensation of a dipyrrin-dipyrromethane and a dipyrromethane-dicarbinol under InCl(3) catalysis followed by oxidation with DDQ (10-16% yield). Four triads of form (ZnP-dp)(2)Zn were prepared in 83-97% yield by treatment of a porphyrin-dipyrrin with Zn(OAc)(2).2H(2)O at room temperature. Free base dipyrrins typically absorb at 430-440 nm, while the bis(dipyrrinato)metal complexes absorb at 460-490 nm. The fluorescence spectra/yields and excited-state lifetimes of the (ZnP-dp)(2)Zn triad in toluene show (1). efficient energy transfer from the bis(dipyrrinato)zinc(II) chromophore to the zinc porphyrins (98.5% yield), and (2). little or no quenching of the resulting excited zinc porphyrin relative to the isolated chromophore. Taken together, these results indicate that bis(dipyrrinato)zinc(II) complexes can serve as self-assembling linkers that further function as secondary light-collection elements in porphyrin-based light-harvesting arrays.  相似文献   

2.
Intramolecular photoinduced electron transfer (PET) processes occurring in dyads with a free base porphyrin-tetraazaanthracene donor (P) and either a tetracyanonaphthoquinidodimethane (TCQ) or benzoquinone (BQ) acceptor linked by a rigid six σ-bond polynorbornane bridge ([6]) have been investigated. For P[6]BQ, PET in the polar solvent benzonitrile (s = 25.9) occurs with a rate constant (kPET) of 1.6 × 108 s−1 but is not evident in solvents less polar than tetrahydrofuran (s = 7.52). For P[6]TCQ, highly efficient forward PET occurs in both polar and non-polar solvents (kPET > 2 × 1010 s−1). For P[6]TCQ the lifetime of the resulting charge-separated state decreases markedly with increasing solvent polarity. The results are discussed in the context of the likely mechanisms for electronic coupling and current theories for PET processes in such linked molecular systems.  相似文献   

3.
Fluorescence and laser-flash photolysis measurements have been performed on two pairs of diastereomeric dyads that contain the nonsteroidal anti-inflammatory drug (S)- or (R)-flurbiprofen (FBP) and (S)-tryptophan (Trp), which is a relevant amino acid present in site I of human serum albumin. The fluorescence spectra were obtained when subjected to excitation at 266 nm, where approximately 60% of the light is absorbed by FBP and approximately 40% is absorbed by Trp; the most remarkable feature observed in all dyads was a dramatic fluorescence quenching, and the residual emission was assigned to the Trp chromophore. In addition, an exciplex emission was observed as a broad band between 380 and 500 nm, especially in the case of the (R,S) diastereomers. The fluorescence lifetimes (tauF) at lambdaem=340 nm were clearly shorter in the dyads than in Trp-derived model compounds; in contrast, the values of tauF at lambdaem=440 nm (exciplex) were much longer. On the other hand, the typical FBP triplet-triplet transient absorption spectrum was obtained when subjected to laser-flash photolysis, although the signals were less intense than when FBP was directly excited under the same conditions. The main photophysical events in FBP-Trp dyads can be summarized as follows: (1) most of the energy provided by the incident radiation at 266 nm reaches the excited singlet state of Trp (1Trp*), either via direct absorption by this chromophore or by singlet singlet energy transfer from excited FBP (1FBP*); (2) a minor, yet stereoselective deactivation of 1FBP* leads to detectable exciplexes and/or radical ion pairs; (3) the main process observed is intramolecular 1Trp* quenching; and (4) the first triplet excited-state of FBP can be populated by triplet-triplet energy transfer from excited Trp or by back-electron transfer within the charge-separated states.  相似文献   

4.
Excited-state interactions between (S)- or (R)-flurbiprofen ((S)- or (R)-FBP) and thymidine (dThd) covalently linked in dyads 1 or 2 have been investigated. In both dyads, the only emitting species is (1)FBP*, but with a lower fluorescence quantum yield (?(F)) and a shorter fluorescence lifetime (τ(F)) than when free in solution. These results indicate that dynamic quenching occurs either by electron transfer or via exciplex formation, with FBP as the charge-donating species. In acetonitrile, both mechanisms are favored, while in dioxane exciplex formation is predominating. Isomer 1 displays lower values of ?(F) and τ(F) than its analogue 2, indicating that the relative spatial arrangement of the chromophores plays a significant role. The triplet quantum yields (?(T)) of 1 and 2 are significantly higher than the expectations based solely on (1)FBP*-dThd intersystem crossing quantum yields (?(ISC)), with ?(T) (1) > ?(T) (2). This can be explained in terms of intramolecular charge recombination at the radical ion pairs and/or the exciplexes, which would be again dependent on geometrical factors. The triplet lifetimes (τ(T)) of (3)FBP*-dThd and free (3)FBP* are similar, indicating the lack of excited-state interactions at this stage. The FBP-dThd dyads could, in principle, constitute appropriate model systems for the elucidation of the excited-state interactions in noncovalent DNA-ligand complexes.  相似文献   

5.
The photophysics and excited-state dynamics of two dyads consisting of either a free-base or a zinc-tetraphenylporphyrin linked through a rigid bridge to a core-substituted naphthalenediimide (NDI) have been investigated by femtosecond-resolved spectroscopy. The absorption and fluorescence spectra differ substantially from those of the individual units, pointing to a substantial coupling and to a delocalisation of the excitation over the whole molecule, as confirmed by quantum chemistry calculations. A strong dependence of their excited-state dynamics on the solvent polarity has been observed. In toluene, the fluorescence quantum yield of the dyads is of the order of a few percent and the main decay channel of the emitting state is proposed as intersystem-crossing to the triplet state. However, in a medium polarity solvent like dichloromethane, the emitting state undergoes charge separation from the porphyrin to the NDI unit within 1-3 ps, and the ensuing charge-separated state recombines in about 10-20 ps. This solvent dependence can be explained by the weak driving force for charge separation in polar solvents and the large electronic coupling between the porphyrin and NDI moieties, making charge separation a solvent-controlled adiabatic process.  相似文献   

6.
The relaxation dynamics of unsubstituted porphyrin (H2P), diprotonated porphyrin (H4P2+), and tetraoxaporphyrin dication (TOxP2+) has been investigated in the femtosecond-nanosecond time domain upon photoexcitation in the Soret band with pulses of femtosecond duration. By probing with spectrally broad femtosecond pulses, we have observed transient absorption spectra at delay times up to 1.5 ns. The kinetic profiles corresponding with the band maxima due to excited-state absorption have been determined for the three species. Four components of the relaxation process are distinguished for H2P: the unresolvably short B --> Qy internal conversion is followed by the Qy --> Qx process, vibrational relaxation, and thermalization in the Qx state with time constant approximately 150 fs, 1.8 ps, and 24.9 ps, respectively. Going from H2P to TOxP2+, two processes are resolved, i.e., B --> Q internal conversion and thermal equilibration in the Q state. The B --> Q time constant has been determined to be 25 ps. The large difference with respect to the B --> Qy time constant of H2P has been related to the increased energy gap between the coupled states, 9370 cm-1 in TOxP2+ vs 6100 cm-1 in H2P. The relaxation dynamics of H4P2+ has a first ultrafast component of approximately 300 fs assigned as internal conversion between the B (or Soret) state and charge-transfer (CT) states of the H4P2+ complex with two trifluoroacetate counterions. This process is followed by internal CT --> Q conversion (time constant 9 ps) and thermalization in the Q state (time constant 22 ps).  相似文献   

7.
The excited-state properties of heterodimers oftetra(4-carboxyphenyl)porphyrin (TPPC) and tetra(N-methylpyridyl) porphyrin (TMPyP) are studied by absorption and emission spectroscopy, EPR and zero-field ODMR. The excited singlet and triplet states of dimers formed by pairing H2TPPC with H2TMPyP or ZnTMPyP are localized on H2TPPC. The dimers formed by pairing H2TPPC with CuTMPyP and H2TMPyP with ZnTPPC or CuTPPC are non-fluorescent due to intramolecular electron transfer.  相似文献   

8.
Kin-ya Tomizaki 《Tetrahedron》2004,60(9):2011-2023
Four new porphyrin dyads have been prepared for studies in artificial photosynthesis. The two porphyrins are joined at the meso positions via a phenylethyne linker and are present in zinc/zinc or zinc/free base metalation states. The porphyrin bearing the ethynyl unit incorporates zero, one, or two pentafluorophenyl groups at non-linking meso positions for tuning the porphyrin redox potentials. The synthetic approach entailed Pd-mediated coupling of porphyrin building blocks that bear a single ethynylphenyl or bromo/iodo substituent.  相似文献   

9.
In this study, we have investigated the excited-state energy deactivation dynamics of extended π-conjugated molecular systems that consist of competitive electronic and vibrational relaxation processes.  相似文献   

10.
The excited-state dynamics of a donor-acceptor phenol-pyridinium biaryl cation was investigated in various solvents by femtosecond transient absorption spectroscopy and temperature dependent steady-state emission measurements. After excitation to a near-planar Franck-Condon delocalized excited S(1)(DE) state with mesomeric character, three fast relaxation processes are well resolved: solvation, intramolecular rearrangement leading to a twisted charge-shift (CSh) S(1) state with localized character, and excited-state proton transfer (ESPT) to the solvent leading to the phenoxide-pyridinium zwitterion. The proton transfer kinetics depends on the proton accepting character of the solvent whereas the interring torsional kinetics depends on the solvent polarity and viscosity. In nitriles, ESPT does not occur and interring twisting arises with no significant intrinsic barrier, but still slower than solvation. The CSh state is notably fluorescent. In alcohols and water, ESPT is faster than the solvation and DE → CSh relaxation processes and yields the zwitterion hot ground state, which strongly quenches the fluorescence. In THF, solvation and interring twisting occur first, leading to the fully relaxed, weakly fluorescent CSh state, followed by slow ESPT towards the zwitterion. At low temperature (77 K), the large viscous barrier of the solvent inhibits the torsional relaxation but ESPT still arises to some extent. Strong emission from the DE geometry and planar zwitterion is thus observed. Finally, quantum chemical calculations were performed on the ground and excited state of model phenol-pyridinium and phenoxide-pyridinium compounds. Strong S(1) state energy stabilization is predicted upon twisting in both cases, consistent with a fast relaxation towards the perpendicular geometry. A substantial S(0)-S(1) energy gap is still present for the twisted cationic species, which can explain the long-lived emission of the CSh state in nitriles. A quite different situation arises with the zwitterion for which the S(0)-S(1) energy gap predicted at the twisted geometry is very small. This suggests a close-lying conical intersection and can account for the strong fluorescence quenching observed in solvents where the zwitterion is produced by ESPT.  相似文献   

11.
An efficient noncovalent assembly process involving high geometrical control was applied to a linear bis(imidazolyl zinc porphyrin) 7Zn, bearing C(18) substitutents, to generate linear multiporphyrin wires. The association process is based on imidazole recognition within the cavity of the phenanthroline-strapped zinc porphyrin. In chlorinated solvents, discrete soluble oligomers were obtained after (7Zn)(n) was end-capped with a terminal single imidazolyl zinc porphyrin derivative 4Zn. These soluble species, as well as their destabilization in the presence of protic solvents, were studied by UV-visible and time-resolved luminescence. In the solid state, assemblies as long as 480 nm, which corresponds to 190 iterative units or a total of 380 porphyrins, were observed by atomic force microscopy measurements on mica. The length and linearity of the porphyrin wires obtained illustrate the potential of phenanthroline-strapped porphyrins for the directional control of self-assembly processes.  相似文献   

12.
Abstract New classes of synthetic chlorin and bacteriochlorin macrocycles are characterized by narrow spectral widths, tunable absorption and fluorescence features across the red and near-infrared (NIR) regions, tunable excited-state lifetimes (<1 to >10 ns) and chemical stability. Such properties make dyad constructs based on synthetic chlorin and bacteriochlorin units intriguing candidates for the development of NIR molecular imaging probes. In this study, two such dyads (FbC-FbB and ZnC-FbB) were investigated. The dyads contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. In both constructs, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of approximately (5 ps)(-1) and a yield of >99%. Thus, each dyad effectively behaves as a single chromophore with an exceptionally large Stokes shift (85 nm for FbC-FbB and 110 nm for ZnC-FbB) between the red-region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (lambda(f) = 760 nm, Phi(f) = 0.19, tau approximately 5.5 ns in toluene). The long-wavelength transitions (absorption, emission) of each constituent of each dyad exhibit narrow (相似文献   

13.
The excited-state dynamics of a series of Wurster's salts (p-phenylenediamine radical cations) with different subtituents on the nitrogen atoms was investigated under a variety of experimental conditions using a combination of ultrafast spectroscopic techniques. At room temperature, the lifetime of the lowest excited state of all radical cations is on the order of 200 fs, independently of the solvent, that is, water, nitriles, alcohols, and room-temperature ionic liquid. On the other hand, all cations, except that with the bulky nitrogen substituents, become fluorescent below 120 K. The observed dynamics can be accounted for by the presence of a conical intersection between the D(1) and D(0) states. For the cations with a small nitrogen substituent, this conical intersection could be accessed through a twist of one amino group, as already suggested for Wurster's Blue. However, this coordinate cannot be invoked for the cation with bulky nitrogen subtituents, and more probably, pyramidalization of the nitrogen center and/or deformation of the phenyl ring play an important role. Consequently, the excited-state dynamics of these structurally very similar Wurster's salts involves different decay mechanisms.  相似文献   

14.
Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner.  相似文献   

15.
Merocyanine (MC) isomers that are formed after absorption of a UV photon by 1',3'-dihydro-1',3'-3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2',2'-(2H)-indole] were studied. Several, predominantly TTC and TTT, merocyanine isomers are present in toluene solution ("T" and "C" indicate trans and cis conformations of the C-C bonds in the methine bridge). Excitation in the MC visible absorption band (at 490, 550, and 630 nm) with 100 fs laser pulses was used to study MC excited-state dynamics. Internal conversion on the picosecond time scale was found to be the dominant relaxation pathway. Excited-state isomerization reactions were also observed. Excitation at 630 nm (assigned to TTC isomer excitation) leads to formation of a third isomer (either CTC or CTT). Excitation at 490 nm (assigned to TTT isomer excitation) leads to more complex excited-state relaxation, including formation of two isomers: TTC (absorption at 600 nm) and CTC or CTT (absorption at 650 nm).  相似文献   

16.
The Pd-mediated Glaser coupling of a zinc monoethynyl porphyrin and a magnesium monoethynyl porphyrin affords a mixture of three 4,4'-diphenylbutadiyne-linked dyads comprised of two zinc porphyrins (Zn-pbp-Zn), two magnesium porphyrins (Mg-pbp-Mg), and one metalloporphyrin of each type (Zn-pbp-Mg). The latter is easily isolated due to the greater polarity of the magnesium versus the zinc chelate. Exposure of Zn-pbp-Mg to silica gel results in selective demetalation, affording Zn-pbp-Fb where Fb = free base porphyrin. This synthesis route employs the magnesium porphyrin as a latent form of the Fb porphyrin, thereby avoiding copper insertion during the Glaser reaction, and as a polar entity facilitating separation. The absorption spectrum of Zn-pbp-Mg or Zn-pbp-Fb is the sum of the spectra of the component parts, while in each case the fluorescence spectrum upon illumination of the Zn porphyrin is dominated by emission from the Mg or Fb porphyrin. Time-resolved absorption spectroscopy shows that the energy-transfer rate constants are (11 ps)(-1) and (37 ps)(-1) for Zn-pbp-Mg and Zn-pbp-Fb, respectively, corresponding to energy-transfer quantum yields of 0.995 and 0.983, respectively. The calculated F?rster through-space rates are (1900 ps)(-1) and (1100 ps)(-1) for Zn-pbp-Mg and Zn-pbp-Fb, respectively. Accordingly, the through-bond process dominates for both dyads with a through-bond:through-space energy-transfer ratio of > or =97:1. Collectively, the studies show that the 4,4'-diphenylbutadiynyl linker supports fast and efficient energy transfer between Zn and Mg or Fb porphyrins.  相似文献   

17.
5-Fluorouracil is an analogue of thymine and uracil, nucleobases found in DNA and RNA, respectively. The photochemistry of thymine is significant; UV-induced photoproducts of thymine in DNA lead to skin cancer and other diseases. In previous work, we have suggested that the differences in the excited-state structural dynamics of thymine and uracil arise from the methyl group in thymine acting as a mass barrier, localizing the vibrations at the photochemical active site. To further test this hypothesis, we have measured the resonance Raman spectra of 5-fluorouracil at wavelengths throughout its 267 nm absorption band. The spectra of 5-fluorouracil and thymine are very similar. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism suggests that, at most, 81% of the reorganization energy upon excitation is directed along photochemically relevant modes. This compares well with what was found for thymine, supporting the mass barrier hypothesis.  相似文献   

18.
The excited-state dynamics of two polyfluorene copolymers, one fully conjugated containing phenylene vinylene units alternated with 9,9'-dihexylfluorenyl groups and the other segmented by -(CH2)8- spacer, were studied in dilute solution of different solvents using a picosecond single-photon timing technique. The excited-state dynamics of the segmented copolymer follows the F?rster resonant energy-transfer model which describes intrachain energy-transfer kinetics among random oriented chromophores. Energy transfer is confirmed by analysis of fluorescence anisotropy relaxation with the measurement of a short decay component of about 60 ps. The fluorescence decay surface of the fully conjugated copolymer is biexponential with decay times of about 470 and 900 ps, ascribed to deactivation of chain moieties containing trans and cis isomers already in a photostationary condition. Thus, energy transfer is very fast due to the conjugated nature and rigid-rod-like structure of this copolymer chain.  相似文献   

19.
A porphyrin-ferrocene dyad has been synthesized in which there is close face-to-face contact between the two aromatic systems, providing a model for heterobimetallic polymers based on the same repeating unit. Attempts to synthesize the 2:1 adduct instead led to a remarkable intramolecular Heck-type cyclization which planarizes the system and extends the conjugation. [structure: see text]  相似文献   

20.
The nonlinear absorptions and nonlinear refractions of free-base porphyrin (P2) and Zn-porphyrin (ZnP2) were studied using the Z-scan technique at 532 nm with different pulse durations. Both P2 and ZnP2 exhibit reverse saturated absorption attributed to excited-state absorption. The coordination of P2 by Zn ion can alter the nonlinear refraction sign from negative to positive at 4 ns pulse. The results indicate that the sign of self-lensing can be tuned by the coordination of Zn in the porphyrin derivatives. In the case of longer pulse duration, the thermal effect was enhanced to dominate the nonlinear refraction sign, leading to the negative nonlinear refraction repeated appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号