首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
By building key structural features into hydrophilic drugs, they can be recognized by the PepT1 transporter system of the small intestine and rendered orally active. The model shown provides, for the first time, a 3D template for all known substrates of PepT1.  相似文献   

2.
The conformation at the first residue of dipeptide substrates for the peptide transporter PepT1 has been probed using constrained peptide analogues, and the active conformation has been identified.  相似文献   

3.
The stereochemistry of thiodipeptides of proline [e.g. Ala-Psi[CS-N]-Pro] can be controlled using pH, allowing the trans-preference for substrates of the peptide transporter PepT1 to be confirmed.  相似文献   

4.
Cytochrome P450 1A1 (CYP1A1), a heme-containing monooxygenase, is of particular importance for human health because of its vital roles in the metabolic activation of pro-carcinogenic compounds to the carcinogens. Deciphering the relevance of CYP1A1 to human diseases and screening of CYP1A1 modulators require reliable tool(s) for probing this key enzyme in complex biological matrices. Herein, a practical and ultrasensitive fluorescence-based assay for real-time sensing CYP1A1 activities in biological systems has been developed, via designing an isoform-specific fluorogenic sensor for CYP1A1 (CHPO). The newly developed fluorogenic substrate for CYP1A1 has been carefully investigated in terms of specificity, sensitivity, precision, quantitative linear range and the anti-interference ability. The excellent selectivity, strong anti-interference ability and fast response kinetics, making the practicability of CHPO-based CYP1A1 activity assay is better than that of most reported CYP1A1 activity assays. Furthermore, CHPO has been successfully used for imaging CYP1A1 activities in living cells and human tissues, as well as for high-throughput screening of CYP1A1 inhibitors using tissue preparations as enzyme sources. Collectively, this study provided a practical fluorogenic sensor for real-time sensing CYP1A1 in complex biological systems, which would strongly facilitate the investigations on the relevance of CYP1A1 to human diseases and promote high-throughput screening of CYP1A1 modulators for biomedical applications.  相似文献   

5.
《中国化学快报》2020,31(11):2945-2949
Cytochrome P450 1A1 (CYP1A1), a heme-containing monooxygenase, is of particular importance for human health because of its vital roles in the metabolic activation of pro-carcinogenic compounds to the carcinogens. Deciphering the relevance of CYP1A1 to human diseases and screening of CYP1A1 modulators require reliable tool(s) for probing this key enzyme in complex biological matrices. Herein, a practical and ultrasensitive fluorescence-based assay for real-time sensing CYP1A1 activities in biological systems has been developed, via designing an isoform-specific fluorogenic sensor for CYP1A1 (CHPO). The newly developed fluorogenic substrate for CYP1A1 has been carefully investigated in terms of specificity, sensitivity, precision, quantitative linear range and the anti-interference ability. The excellent selectivity, strong anti-interference ability and fast response kinetics, making the practicability of CHPO-based CYP1A1 activity assay is better than that of most reported CYP1A1 activity assays. Furthermore, CHPO has been successfully used for imaging CYP1A1 activities in living cells and human tissues, as well as for high-throughput screening of CYP1A1 inhibitors using tissue preparations as enzyme sources. Collectively, this study provided a practical fluorogenic sensor for real-time sensing CYP1A1 in complex biological systems, which would strongly facilitate the investigations on the relevance of CYP1A1 to human diseases and promote high-throughput screening of CYP1A1 modulators for biomedical applications.  相似文献   

6.
Liquid chromatography was used for the quantification of aflatoxin B1-oxime (AFB1-oxime). The yield of AFB1-oxime in the reaction mixture was 89%, while after purification on silica gel it was 72%. LC analysis of the reaction mixture after silica gel fractionation revealed a retention time of 0.84 min for AFB1-oxime, 8.42 min for AFB1, 1.21 min for unknown 1 and 1.61 min for unknown 2. UV-visible analysis of the reaction mixture after silica gel fractionation showed a lambda(max) of 269 and 361 nm for AFB1-oxime, 263 and 360 nm for AFB1, 273 nm for unknown 1 and 275 nm for unknown 2. Excitation and emission wavelengths were found to be 269 and 368/438 nm for AFB1-oxime, 359/424 nm for AFB1, 270 and 367/450 nm for unknown 1 and 273 and 416/447 nm for unknown 2. The method may find versatile application in monitoring reactions for the preparation of oximes of various analytes for the synthesis of their immunogens.  相似文献   

7.
Transition probabilities were evaluated for the X(1)A(1)-A(1)B(1) and A(1)B(1)-B(1)A(1) systems of SiH(2) and SiD(2) to analyze the X-->A-->B photoexcitation. The Franck-Condon factors (FCFs) and Einstein's B coefficients were computed by quantum vibrational calculations using the three-dimensional potential energy surfaces (PESs) of the SiH(2)(X(1)A(1),A(1)B(1),B(1)A(1)) electronic states and the electronic transition moments for the X-A, X-B, and A-B system. The global PESs were determined by the multireference configuration interaction calculations with the Davidson correction and the interpolant moving least-squares method combined with the Shepard interpolation. The obtained FCFs for the X-A and A-B systems exhibit that the bending mode is strongly enhanced in the excitation since the equilibrium bond angle greatly varies with the three states; the barrier to linearity is evaluated to be 21,900 cm(-1) for the X state, 6400 cm(-1) for the A state, and 230-240 cm(-1) for the B state. The theoretical lifetimes for the pure bending levels of the A and B states were calculated from the fluorescence decay rates for the A-X, B-A, and B-X emissions.  相似文献   

8.
The equilibrium geometries, excitation energies, force constants and vibrational frequencies for seven low-lying electronic states X 1A1, 1B1, 3B1, 1A2, 3A2, 1B2 and 3B2 of dichlorocarbene CCl2 have been calculated at the MRSDCI level with a double-zeta plus polarization basis set. Our calculated equilibrium geometry for the X 1A1 state, excitation energy for X 1A11B1 and vibrational frequencies for the X 1A1 and 1B1 states are in good agreement with experimental data. The electronic transition dipole moments, oscillator strengths for the 1B1 → X 1A1 and 1B2 → X 1A1 transitions, radiative lifetimes for the 1B1 and 1B1 states are calculated using MRSDCI wavefunctions, predicting results in reasonable agreement with experiment.  相似文献   

9.
Transition probabilities were evaluated for the X (1)Sigma(+)-A (1)Pi system of AlNC and AlCN isomers to analyze photoabsorption and fluorescence spectra. The global potential energy surfaces (PESs) of the X (1)Sigma(+) and A (1)Pi (1 (1)A("),2 (1)A(')) electronic states were determined by the multireference configuration interaction calculations with the Davidson correction. Einstein's B coefficients were computed by quantum vibrational calculations using the three-dimensional PESs of these states and the electronic transition moments for the X-1 (1)A(") and X-2 (1)A(') systems. Einstein's B coefficients obtained for AlNC or AlCN exhibit that the Al-N or Al-C stretching mode is strongly enhanced in the transition. The absorption and fluorescence spectra calculated for the X-1 (1)A(") and X-2 (1)A(') systems are discussed comparing with the observed photoexcitation and fluorescence spectra. The lifetimes for the several vibrational levels of the A (1)Pi state were calculated to be ca. 7 ns for AlNC and 21-24 ns for AlCN from the fluorescence decay rates of the 1 (1)A(")-X and 2 (1)A(')-X emissions.  相似文献   

10.
The electrochemical oxidation of tacrine and its 1-OH-metabolite, has been studied by cyclic voltammetry and differential pulse voltammetry by using carbon paste electrodes. The peak current-concentration relationship was found to be linear up to 20 micrograms ml-1 with detection limits of 0.06 microgram ml-1 for tacrine and 0.18 microgram ml-1 for 1-OH-tacrine and quantitation limits of 0.20 microgram ml-1 for tacrine and 0.37 microgram ml-1 for 1-OH-tacrine. A method for determining tacrine by differential pulse voltammetry in pharmaceuticals and human urine, in the presence of 1-OH-tacrine, has been developed.  相似文献   

11.
The photochemical behavior of trans-4-(N-arylamino)stilbene (1, aryl = 4-substituted phenyl) in solvents more polar than THF is strongly dependent on the substituent in the N-aryl group. This is attributed to the formation of a twisted intramolecular charge transfer (TICT) state for those with a methoxy (1OM), methoxycarbonyl (1CO), or cyano (1CN) substituent but not for those with a methyl (1Me), hydrogen (1H), chloro (1Cl), or trifluoromethyl (1CF) substituent. On the basis of the ring-bridged model compounds 3-6, the TICT states for 1CN and 1CO result from the twisting of the anilino-benzonitrilo C-N bond, but for 1OM it is from the twisting of the stilbenyl-anilino C-N bond, both of which are distinct from the TICT states previously proposed for N,N-dimethylaminostilbenes.  相似文献   

12.
Various ab initio methods, including self-consistent field (SCF), configuration interaction, coupled cluster (CC), and complete-active-space SCF (CASSCF), have been employed to study the electronic structure of copper hydroxide (CuOH). Geometries, total energies, dipole moments, harmonic vibrational frequencies, and zero-point vibrational energies are reported for the linear 1Sigma+ and 1Pi stationary points, and for the bent ground-state X 1A', and excited-states 2 1A' and 1 1A". Six different basis sets have been used in the study, Wachters/DZP being the smallest and QZVPP being the largest. The ground- and excited-state bending modes present imaginary frequencies for the linear stationary points, indicating that bent structures are more favorable. The effects of relativity for CuOH are important and have been considered using the Douglas-Kroll approach with cc-pVTZ/cc-pVTZ_DK and cc-pVQZ/cc-pVQZ_DK basis sets. The bent ground and two lowest-lying singlet excited states of the CuOH molecule are indeed energetically more stable than the corresponding linear structures. The optimized geometrical parameters for the X 1A' and 1 1A" states agree fairly well with available experimental values. However, the 2 1A' structure and rotational constants are in poor agreement with experiment, and we suggest that the latter are in error. The predicted adiabatic excitation energies are also inconsistent with the experimental values of 45.5 kcal mol(-1) for the 2 1A' state and 52.6 kcal mol(-1) for the 1 1A" state. The theoretical CC and CASSCF methods show lower adiabatic excitation energies for the 1 1A" state (53.1 kcal mol(-1)) than those for the corresponding 2 1A' state (57.6 kcal mol(-1)), suggesting that the 1 1A" state might be the first singlet excited state while the 2 1A' state might be the second singlet excited state.  相似文献   

13.
The organometallic compound trans-(tetrafluoropyrid-2-yl)bis(triethylphosphine)-fluoronickel(II) (NiF) is shown to serve as a strong hydrogen bond and halogen bond acceptor in solution via intermolecular interactions with the fluoride ligand. The nature of the interactions has been confirmed by multinuclear NMR spectroscopy. Experimental binding constants, enthalpies, and entropies of interaction with hydrogen-bond-donor indole and halogen-bond-donor iodopentafluorobenzene have been determined by 19F NMR titration. In toluene-d8 solution indole forms a 1:1 and 2:1 complex with NiF (K1 = 57.9(3), K2 = 0.58(4)). Interaction enthalpies and entropies are -23.4(2) kJ mol-1 and -44.5(8) J mol-1 K-1, respectively, for the 1:1 complex; -14.8(8) kJ mol-1 and -53(3) J mol-1 K-1, respectively, for the 2:1 complex. In toluene-d8 solution iodopentafluorobenzene forms only a 1:1 complex (K1 = 3.41(9)) with enthalpy and entropy of interaction of -16(1) kJ mol-1 and -42(4) J mol-1 K-1, respectively. A marked solvent effect was observed for the halogen bond interaction. NMR titrations in heptane solution indicated formation of both 1:1 and 2:1 complexes of iodopentafluorobenzene with NiF (K1 = 21.8(2), K2 = 0.22(4)). Interaction enthalpies and entropies are -26(1) kJ mol-1 and -63(4) J mol-1 K-1, respectively, for the 1:1 complex; -21(1) kJ mol-1 and -83(5) J mol-1 K-1, respectively, for the 2:1 complex. There is a paucity of such experimental energetic data particularly for halogen bonds despite substantial structural data. These measurements demonstrate that halogen bonds are competitive with hydrogen bonds as intermolecular interactions and provide a suitable benchmark for theoretical calculations and quantitative input into design efforts in supramolecular chemistry and crystal engineering.  相似文献   

14.
The gas-phase reaction of ozone with C5? C10 alkenes(eight 1-alkenes, four 1,1-disubstituted alkenes, and cyclohexene) has been investigated at atmospheric pressure and ambient temperature (285–293 K). Cyclohexane was added to scavenge the hydroxyl radical, which forms as a product of the ozone-alkene reaction. The reaction rate constants, in units of 10?18 cm3 molecule?1 s?1, are 9.6±1.6 for 1-pentene, 9.7±1.4 for 1-hexene, 9.4±0.4 for 1-heptene, 12.5±0.4 for 1-octene, 8.0±1.4 for 1-decene, 3.8±0.6 for 3-methyl-1-pentene, 7.3±0.7 for 4-methyl-1-pentene, 3.9±0.9 for 3,3-dimethyl-1-butene, 13.3±1.4 for 2-methyl-1-butene, 12.5±1.1 for 2-methyl-1-pentene, 10.0±0.3 for 2,3-dimethyl-1-butene, 13.7±0.9 for 2-ethyl-1-butene, and 84.6±1.0 for cyclohexene. Substituent effects on alkene reactivity are examined. Steric effect appear to be important for all 1,1-disubstituted alkenes as well as for those 1-alkenes that bear s-butyl and t-butyl groups. The results are briefly discussed with respect to the atomospheric persistence of the alkenes studied. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
A benchmark database of forward and reverse barrier heights for 19 non-hydrogen-transfer reactions has been developed by using Weizmann 1 calculations, and 29 DFT methods and 6 ab initio wave-function theory (WFT) methods have been tested against the new database as well as against an older database for hydrogen atom transfer reactions. Among the tested hybrid DFT methods without kinetic energy density, MPW1K is the most accurate model for calculations of barrier heights. Among the tested hybrid meta DFT methods, BB1K and MPWB1K are the two most accurate models for the calculations of barrier heights. Overall, the results show that BB1K and MPWB1K are the two best DFT methods for calculating barrier heights, followed in order by MPW1K, MPWKCIS1K, B1B95, MPW1B95, BH and HLYP, B97-2, mPW1PW91, and B98. The popular B3LYP method has a mean unsigned error four times larger than that of BB1K. Of the methods tested, QCISD(T) is the best ab initio WFT method for barrier height calculations, and QCISD is second best, but QCISD is outperformed by the BB1K, MPWB1K, MPWKCIS1K, and MPW1K methods.  相似文献   

16.
Exchange of guest molecules into capsule shaped host molecules is the most fundamental process in host-guest chemistry. Several examples of quantitative measurements of guest exchange rates have been reported. However, there have been no reports on the activation energies of these processes. A molecule known as cavitand-porphyrin (H2CP) has been reported to have a flexible host structure capable of facilitating moderate guest exchange rates suitable for kinetic measurements of the guest exchange process with 1H NMR. In this article, various kinetic and thermodynamic parameters related to the process of encapsulation of small hydrocarbons into H2CP in CDCl3 solution were determined by 2D exchange spectroscopy (EXSY): association and dissociation rate constants (k(ass) = 320 M-1 s-1, k(diss) = 1.4 s-1 for methane at 25 degrees C), the corresponding activation energies (E(a,ass) = 27 kJ.mol-1, E(a,diss) = 58 kJ.mol-1), and thermodynamic parameters for each process (DeltaG++(ass) = 59 kJ.mol-1, DeltaG++(diss) = 72 kJ.mol-1, DeltaH++(ass) = 25 kJ.mol-1, DeltaH++(diss) = 55 kJ.mol-1, DeltaS++(ass) = -113 J.K-1.mol-1, and DeltaH++(diss) = 58 J.K-1.mol-1 for methane). The thermodynamic parameters (DeltaG degrees = -13 kJ.mol-1, DeltaH degrees = -31 kJ.mol-1, DeltaS degrees = -60 J.K-1.mol-1 for methane) for this encapsulation equilibrium determined by EXSY were comparable to those for methane determined by 1D 1H NMR titration (DeltaG degrees = -11 kJ.mol-1, DeltaH degrees = -33 kJ.mol-1, DeltaS degrees = -75 J.K-1.mol-1 for methane). In addition, the structure of the methane encapsulation process was revealed by ab initio MO calculations. The activation energies for methane association/dissociation were estimated from MP2 calculations (E(a,ass) = 58.3 kJ.mol-1, E(a,diss) = 89.1 kJ.mol-1, and DeltaH degrees = -30.8 kJ.mol-1). These values are in accord with the experimentally determined values. The observed guest exchange rates and energies are compared with the corresponding values of various reported capsule-shaped hosts.  相似文献   

17.
The sorption and the transport of water vapor in films of alginic acid (G1), sodium alginate (G1Na), and alginate-cobalt complex (G1Co) were studied at 30°C by employing the weighing method. Sorption isotherms for all films of G1, G1Na, G1Co were of type II in the Brunauer's classification. The integral absorption from, and desorption to, zero pressure were non-Fickian type for all films studied. The mean permeability coefficient P , which was determined by the cup method, increased with the increase of vapor pressure, especially in the low vapor pressure region. P for G1Na was much higher than that for G1, which mainly reflects more hygroscopic nature of G1Na than that of G1. The values of P for G1Co were lower than those for G1 at lower pressures and then approached those for G1 at higher vapor pressures. Integral diffusion coefficient D evaluated as P /S, where the solubility coefficient S was evaluated from sorption isotherms, increased rapidly with increasing water concentration and then leveled off. In the concentration region studied, the magnitude of D and its dependence on concentration for H2O-G1Na system did not differ much from those for H2O-G1 system. D for H2O-G1Co system was much lower than that for H2O-G1 system. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The aim of this study was to evaluate the effect of the polymeric ratios on the characteristics of chitosan/alginate (ch/alg) self-assembled nanoparticles and their potential as protein delivery vehicle. The nanoparticles were prepared using proper mixing of polymers in presence or absence of bovine serum albumin (BSA) as a protein model. Three formulations of nanoparticles comprising ch/alg ratios of 2:1, 1:1, and 1:2 were prepared. Size, shape and zeta potential of the formulations were studied by scanning electron microscopy (SEM) and nanosizer instruments. FTIR, and differential scanning calorimetery (DSC) studies were performed to investigate polymer-polymer or polymer-protein interactions. Release profiles and entrapment efficiencies of the nanoparticles were determined by calorimetric technique using appropriate techniques. Entrapment efficiency was 70% for ch/alg ratio of 1:1, 65% for 1:2, and 60% for 2:1. The z-average size of the nanoparticles were 403, 205, and 318 nm for ch/alg ratios of 2:1, 1:1, and 1:2, respectively. Average zeta potentials were ?47, +15, ?25 mV for 2:1, 1:1, and 1:2 as well. Considering the favorable features required for protein delivery systems, ch/alg (1:1) due to its smallest size, highest loading, and most homogenous shape was regarded as the best ratio.  相似文献   

19.
A method for the simultaneous determination of prostaglandins E1, A1 and B1 (PGE1, PGA1 and PGB1) in solution has been developed by reversed-phase high-performance liquid chromatography using a 3 microns C18 column. The mobile phase consisted of 35% acetonitrile in 0.002 M phosphate buffer (pH 3.5) and its flow-rate was 1.5 ml/min. Quantitative measurement was performed using a photodiode array detector system at 190, 220, and 280 nm for PGE1, PGA1 and PGB1, respectively. The method has been applied to the primary kinetic studies for reaction profile for PGE1----PGA1----PGB1 at 60 degrees C in pH 2.0, 7.2, 10.0 and 12.0 buffer solutions.  相似文献   

20.
A new atomistic simulation model for electrochemical systems is presented. It combines microcanonical molecular dynamics for the electrode with stochastic dynamics for the solution, and allows the simulation of electrochemical deposition and dissolution for specific electrode potentials. As first applications the deposition of silver and platinum on Au(1 1 1) have been studied; both flat surfaces and surfaces with islands have been considered. The two systems behave quite differently: Ag on Au(1 1 1) grows layer by layer, while Pt forms a surface alloy on Au(1 1 1), which is followed by three-dimensional growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号