首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘超  应盼 《中国物理 B》2022,31(2):26201-026201
Two novel non-isoelectronic with diamond(non-IED)B–C–O phases(tI16-B8C6O2and mP16-B8C5O3)have been unmasked.The research of the phonon scattering spectra and the independent elastic constants under ambient pressure(AP)and high pressure(HP)proves the stability of these non-IED B–C–O phases.Respective to the common compounds,the research of the formation enthalpies and the relationship with pressure of all non-IED B–C–O phases suggests that HP technology performed in the diamond anvil cell(DAC)or large volume press(LVP)is an important technology for synthesis.Both tI16-B8C6O2and tI12-B6C4O2possess electrical conductivity.mP16-B8C5O3is a small bandgap semiconductor with a 0.530 eV gap.For aP13-B6C2O5,mC20-B2CO2and tI18-B4CO4are all large gap semiconductors with gaps of 5.643 eV,6.113 eV,and 7.105 eV,respectively.The study on the relationship between band gap values and pressure of these six non-IED B–C–O phases states that tI16-B8C6O2and tI12-B6C4O2maintain electrical conductivity,mC20-B2CO2and tI18-B4CO4have good bandgap stability and are less affected by pressure.The stress-strain simulation reveals that the max strain and stress of 0.4 GPa and 141.9 GPa respectively,can be sustained by tI16-B8C6O2.Studies on their mechanical properties shows that they all possess elasticity moduli and hard character.And pressure has an obvious effect on their mechanical properties,therein toughness of tI12-B6C4O2,aP13-B6C2O5,mC20-B2CO2and tI18-B4CO4 all increases,and hardness of mP16-B8C5O3continue to strengthen during the compression.With abundant hardness characteristics and tunable band gaps,extensive attention will be focused on the scientific research of non-IED B–C–O compounds.  相似文献   

2.
张钊  崔航  杨大鹏  张剑  汤顺熙  吴思  崔啟良 《中国物理 B》2017,26(10):106402-106402
The structural compression mechanism and compressibility of gallium oxyhydroxide, α-GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil cell technique. Theα-GaOOH sustains its orthorhombic structure when the pressure is lower than 23.8 GPa. The compression is anisotropic under hydrostatic conditions, with the a-axis being most compressible. The compression proceeds mainly by shrinkage of the void channels formed by the coordination GaO_3(OH)_3 octahedra of the crystal structure. Anomaly is found in the compression behavior to occur at 14.6GPa, which is concomitant with the equatorial distortion of the GaO_3(OH)_3 octahedra. A kink occurs at 14.6 GPa in the plot of finite strain f versus normalized stress F, indicating the change in the bulk compression behavior. The fittings of a second order Birch–Murnaghan equation of state to the P–V data in different pressure ranges result in the bulk moduli B_0= 199(1) GPa for P 14.6 GPa and B_0= 167(2) GPa for P 14.6 GPa. As the pressure is increased to about 25.8 GPa, a first-order phase transformation takes place, which is evidenced by the abrupt decrease in the unit cell volume and b and c lattice parameters.  相似文献   

3.
Hf-C体系的高压结构预测及电子性质第一性原理模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
彭军辉  曾庆丰  谢聪伟  朱开金  谭俊华 《物理学报》2015,64(23):236102-236102
本论文中, 采用晶体结构预测软件USPEX结合第一性原理方法全面地搜索了Hf-C体系在高压下的晶体结构, 预测得到了两种新的化合物及HfC在高压下的相变路径. 压力低于100 GPa 时, 除了常压下的结构HfC, Hf3C2, Hf6C5, 并没有得到新的热力学稳定结构. 在200 GPa时, 预测得到了一种新化合物——Hf2C, 空间群为I4/m; 且HfC的结构发生了相变, 空间群由Fm3m变为C2/m. 在300 GPa时, 预测得到了另一种新化合物——HfC2, 空间群为Immm. 而在400 GPa时, HfC的结构再次发生相变, 空间群为Pnma. 通过能量计算, 得到了Hf-C体系的组分-压力相图: 在压力分别低于15.5 GPa和37.7 GPa时, Hf3C2和Hf6C5是稳定的; 压力分别大于102.5 GPa和215.5 GPa时, Hf2C和HfC2变成稳定化合物; HfC的相变路径为Fm3m→C2/m→Pnma, 相变压力分别为185.5 GPa 和322 GPa. 经结构优化后, 得到了这四种高压新结构的晶体学数据, 如晶格常数、原子位置等, 并分析了其结构特点. 对于Hf-C 体系中的高压热力学稳定结构, 分别计算了其弹性性质和声子谱曲线, 证明是力学稳定和晶格动力学稳定的. 采用第一性原理软件VASP模拟高压结构的能带结构、态密度、电子局域函数和Bader 电荷分析, 发现HfC(C2/m, Pnma结构), Hf2C 和HfC2 中Hf-C 键具有强共价性、弱金属性和离子性, 且C-C 间存在共价作用.  相似文献   

4.
Yaguang Hao 《中国物理 B》2022,31(4):46502-046502
We report a new type of near-zero thermal expansion material β-CuZnV2O7 in a large temperature range from 173 K to 673 K. It belongs to a monoclinic structure (C2/c space group) in the whole temperature range. No structural phase transition is observed at atmospheric pressure based on the x-ray diffraction and Raman experiment. The high-pressure Raman experiment demonstrates that two structural phase transitions exist at 0.94 GPa and 6.53 GPa, respectively. The mechanism of negative thermal expansion in β-CuZnV2O7 is interpreted by the variations of the angles between atoms intuitively and the phonon anharmonicity intrinsically resorting to the negative Grüneisen parameter.  相似文献   

5.
The high-pressure behaviour of Bi2Fe4O9 was analysed by in situ powder and single-crystal x-ray diffraction and Raman spectroscopy. Pressures up to 34.3(8) GPa were generated using the diamond anvil cell technique. A reversible phase transition is observed at approximately 6.89(6) GPa and the high-pressure structure is stable up to 26.3(1) GPa. At higher pressures the onset of amorphization is observed. The crystal structures were refined from single-crystal data at ambient pressure and pressures of 4.49(2), 6.46(2), 7.26(2) and 9.4(1) GPa. The high-pressure structure is isotypic to the high-pressure structure of Bi2Ga4O9. The lower phase transition pressure of Bi2Fe4O9 with respect to that of Bi2Ga4O9 (16 GPa) confirms the previously proposed strong influence of cation substitution on the high-pressure stability and the misfit of Ga3+ and Fe3+ in tetrahedral coordination at high pressure. A fit of a second-order Birch–Murnaghan equation of state to the p–V data results in K0 = 74(3) GPa for the low-pressure phase and K0 = 79(2) GPa for the high-pressure phase. The mode Grüneisen parameters were obtained from Raman-spectroscopic measurements.  相似文献   

6.
Peng Liu 《中国物理 B》2022,31(10):106104-106104
As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF3, from R—3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF6 octahedra and formation of TiF8 square antiprismatic units. The Pnma phase of TiF3, formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF3, VF3, CrF3, and MnF3, offering valuable insights into the high-pressure phases of transition metal trifluorides.  相似文献   

7.
金刚石压腔是一种在实验室被频繁使用的高压产生装置,它在高压领域占据着重要地位。当金刚石压腔内传压介质只能提供非静水压环境时,利用传统的红宝石荧光光谱测压方法将很难准确测量样品压强,这也是目前超高压实验面临的普遍困难。若有一种兼具“传压”和“测压”双重功能的物质,根据“相邻位置、相近压强”原则,将能够解决在非静水压环境中测不准样品压强问题。显然,探寻兼具“传压”和“测压”双重功能的物质是一项非常重要的工作。本文将红宝石微粒与离子液体[C4mim][BF4]装入金刚石压腔,然后利用金刚石压腔压缩[C4mim][BF4]使其提供高压环境,同时采集红宝石的荧光光谱及其附近[C4mim][BF4]的拉曼光谱。通过分析红宝石特征荧光峰R1的峰位,得到了[C4mim][BF4]在加压过程中提供的一系列高压环境的压强值。通过分析红宝石特征荧光峰R1的峰宽,发现[C4mim][BF4]在0~6.26和6.26~21.43 GPa两个压强范围内可分别提供静水压环境和准静水压环境,表明[C4mim][BF4]在0~21.43 GPa范围内可以作为传压介质使用。此外,还发现[C4mim][BF4]在0~2.28,2.28~6.26,6.26~14.39和14.39~21.43 GPa四个压强范围内分别为“液相Ⅰ”、“液相Ⅱ”、“非晶相Ⅰ”和“非晶相Ⅱ”。通过分析[C4mim][BF4]中特征拉曼峰ν(B-F)ν(ring)的峰位,发现在[C4mim][BF4]四个相态内ν(B-F)ν(ring)的峰位随压强增加均满足线性变化关系,并给出了相应的压强与峰位关系函数,这些函数是[C4mim][BF4]用作压标物质的重要依据。综上所述,[C4mim][BF4]不仅具有“传压”功能,同时还具有“测压”功能,可同时用作“传压介质”和“压标物质”。研究结果为在非静水压环境中准确测量样品压强提供了重要依据,也为超高压条件下样品压强测量不准确问题提供了新的解决思路。  相似文献   

8.
张倩  巫翔  秦善 《中国物理 B》2017,26(9):90703-090703
The synthesized monoclinic(B-type) phase of Y_2O_3 has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature. A phase transition occurs from monoclinic(B-type) to hexagonal(A-type) phase at 23.5 GPa and these two phases coexist even at the highest pressure. Parameters of isothermal equation of state are V_0= 69.0(1) ~3, K_0= 159(3) GPa, K_0= 4(fixed) for the B-type phase and V_0= 67.8(2) ~3, K_0= 156(3) GPa,K'_0= 4(fixed) for the A-type phase. The structural anisotropy increases with increasing pressure for both phases.  相似文献   

9.
A superconducting state of lithium has not been found at ambient pressure, but the present theoretical work shows that high values of the critical temperature, T(c), may be expected for some high-pressure phases. Ab initio electronic structure calculations are used to calculate the electron-phonon coupling in a "rigid-muffin-tin approximation," and estimates using McMillan's formula suggest that under increasing pressure T(c) in fcc-Li may reach 50--70 K before transitions occur to the rhombohedral (hR1-Li) and subsequently to the cI16-Li phase near 40 GPa. In cI16-Li T(c) may reach a maximum in the range 60--80 K.  相似文献   

10.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

11.
《中国物理 B》2021,30(6):67402-067402
The geometrically frustrated iridate La_3Ir_3O_(11) with strong spin–orbit coupling and fractional valence was recently predicted to be a quantum spin liquid candidate at ambient conditions. Here, we systematically investigate the evolution of structural and electronic properties of La_3Ir_3O_(11) under high pressure. Electrical transport measurements reveal an abnormal insulating behavior rather than metallization above a critical pressure P_c ~ 38.7 GPa. Synchrotron x-ray diffraction(XRD)experiments indicate the stability of the pristine cubic KSbO_3-type structure up to 73.1 GPa. Nevertheless, when the pressure gradually increases across P_c, the bulk modulus gets enhanced and the pressure dependence of bond length d_(Ir-Ir) undergoes a slope change. Consistent with the XRD data, detailed analyses of Raman spectra reveal an abnormal redshift of Raman mode and a change of Raman intensity around P_c. Our results demonstrate that the pressure-induced insulating behavior in La_3Ir_3O_(11) can be assigned to the structural modification, such as the distortion of IrO_6 octahedra. These findings will shed light on the emergent abnormal insulating behavior in other 5 d iridates reported recently.  相似文献   

12.
Elastic properties of three high pressure polymorphs of CaCO_3 are investigated based on first principles calculations.The calculations are conducted at 0 GPa–40 GPa for aragonite, 40 GPa–65 GPa for post-aragonite, and 65 GPa–150 GPa for the P2_1/c-h-CaCO_3 structure, respectively. By fitting the third-order Birch–Murnaghan equation of state(EOS), the values of bulk modulus K_0 and pressure derivative K~'_0 are 66.09 GPa and 4.64 for aragonite, 81.93 GPa and 4.49 for post-aragonite, and 56.55 GPa and 5.40 for P2_1/c-h-CaCO_3, respectively, which are in good agreement with previous experimental and theoretical data. Elastic constants, wave velocities, and wave velocity anisotropies of the three highpressure CaCO_3 phases are obtained. Post-aragonite exhibits 25.90%–32.10% V_P anisotropy and 74.34%–104.30% V_S splitting anisotropy, and P2_1/c-h-CaCO_3 shows 22.30%–25.40% V_Panisotropy and 42.81%–48.00% V_S splitting anisotropy in the calculated pressure range. Compared with major minerals of the lower mantle, CaCO_3 high pressure polymorphs have low isotropic wave velocity and high wave velocity anisotropies. These results are important for understanding the deep carbon cycle and seismic wave velocity structure in the lower mantle.  相似文献   

13.
为研究镁对方解石在高压条件下的相变行为和拉曼振动光谱的影响,探索碳酸盐在地球深部的存在形式和物理化学性质,结合金刚石压腔和激光拉曼光谱,对具有不同镁含量的方解石开展高压实验研究。实验选取天然无色透明冰洲石、淡黄色半透明方解石脉和白色大理石作为研究对象,利用ICP-AES测定冰洲石和方解石脉的成分为CaCO3;大理石中Mg/(Mg+Ca)摩尔比为0.03,其成分可简化为(Mg0.03Ca0.97)CO3。每种方解石样品挑选两粒大小约为50~100×50×20 μm的颗粒放入金刚石压腔,并在不同压力下进行相变过程观察和激光拉曼光谱测量。实验结果显示,常压下冰洲石和方解石脉样品的T1,T24ν1拉曼振动频率分别为156.82,283.55,713.86和1 088.19 cm-1,大理石样品的拉曼振动频率为158.15,284.76,715.07和1 089.20 cm-1,表明方解石中含有3 mol%的MgCO3时会造成方解石的拉曼振动频率整体升高1 cm-1以上。但是该变化幅度在不同压力下没有显著差别,表明镁对方解石的拉曼振动频率随压力的变化速率(∂ν/∂p)没有明显影响。冰洲石和方解石脉样品在1.5 GPa压力附近转变为方解石-Ⅱ,并在2.0 GPa进一步变为方解石-Ⅲ或Ⅲb;相比之下含有3 mol%的MgCO3的大理石则是在2.4和3.7 GPa时才转变为方解石-Ⅱ和方解石-Ⅲ。假设镁对方解石相变压力的影响是线性的,即方解石向方解石-Ⅱ和方解石-Ⅲ/Ⅲb的相变压力随MgCO3含量的增加以0.30和0.57 GPa·mol%-1的速率升高,当MgCO3含量达到50 mol%时,方解石向方解石-Ⅱ和方解石-Ⅲ/Ⅲb的相变压力将分别为16.5和30.5 GPa,这与白云石向白云石-Ⅱ和白云石-Ⅲ的相变压力吻合。结合前人关于方解石中MnCO3含量对矿物相变压力和拉曼光谱影响的研究结果,发现当方解石中部分Ca2+被具有不同半径和质量的离子(如Mg2+,Mn2+等)替代以后,阳离子与CO2-3之间以及CO2-3内部C-O化学键长度和强度都会发生改变,从而引起矿物结构稳定性以及拉曼振动频率的明显变化;并且两种阳离子之间半径差别越大,该影响效果越明显。因此,在研究高温高压条件下方解石的相变行为和拉曼光谱时,矿物中Mg和Mn等杂质元素对矿物结构稳定性和拉曼振动频率的影响是必须考虑的关键因素之一。  相似文献   

14.
压力可以引起蛋白折叠与变性。作为蛋白质的基本构成单位,氨基酸在高压下的变化近来年备受关注。在常见的20种氨基酸中,学者们利用高压拉曼技术已研究了多种氨基酸在高压下的变化,研究的最高压力达到30 GPa。为了探究L-丝氨酸(C3H7NO3)在极高压力下的结构变化情况,采用原位高压拉曼技术在常温下对L-丝氨酸晶体进行研究,最高压力达到22.6 GPa。研究发现,当压力达到2.7 GPa时,在102 cm-1处出现新峰,在1 123 cm-1(NH3反对称摇摆振动)处的特征峰出现劈裂;当压力达到5.4 GPa时,L-丝氨酸晶体在574 cm-1处出现新峰,同时原来164 cm-1处峰消失;当压力达到6.0 GPa时,位于226,456,770和2 968 cm-1(CH2伸缩振动)等处出现新峰,877 cm-1处的CC伸缩振动峰发生劈裂,产生894 cm-1新峰;当压力达到7.9 GPa时,在145,151和2 946 cm-1等出现新峰,同时原在CO2摇摆振动峰的肩峰531 cm-1消失;当压力达到11.0 GPa时,位于249 cm-1处的振动峰开始劈叉,在241 cm-1处形成新峰,位于2 956 cm-1(CH2伸缩振动)同时原位于391和431 cm-1处的峰消失;当压力达到17.5 GPa时,在200 cm-1处出现新峰。通过进一步分析L-丝氨酸的拉曼波数随压力的变化,发现很多拉曼峰在1.37,2.2,5.3,7.46和11.0 GPa以及15.5 GPa等压力点处都出现了拐点。其结果表明:L-丝氨酸在0.1~22.6 GPa之间共发生7处结构相变,分别位于压力区间0.1~1.37,2.2~2.7,5.3,6.0,7.46~7.9,10.1~11.0和15.5~17.5 GPa之间。而且,在6.0 GPa新的相变点在之前文献中未论述过。由于L-丝氨酸晶体在6.0 GPa时CC伸缩振动峰发生劈裂,这现象可能是由于压力引起L-丝氨酸晶体分子发生重排导致的,同时L-丝氨酸晶体分子重排导致氢键发生重排,使得L-丝氨酸晶体出现新的CH2伸缩振动峰。L-丝氨酸晶体在10.1~11.0 GPa之间的拉曼光谱变化主要集中在低波数段,该波数段的拉曼振动模式主要与晶体晶格振动等低能量振动有关。同时在高波数段出现新的CH2峰,由此可推测在10.1~11.0 GPa之间,L-丝氨酸晶体的晶格振动发生变化,产生了新的氢键,从而导致了L-丝氨酸晶体结构的改变。L-丝氨酸晶体在15.5~17.5 GPa之间,由于没有发现直接证据证明其发生结构相变,只是在拉曼波数随压力变化中,发现其在17.5 GPa时出现拐点,因此推测L-丝氨酸晶体在15.5~17.5 GPa之间可能发生结构相变。  相似文献   

15.
 报道了高压下非线性光学晶体KNbO3(KN),KIO3(KI)和KTiOAsO4(KTA)的Raman散射研究结果,压力引起的Raman光谱非常丰富,在所有的样品中都观察到了压致相变。另外,在KN晶体中发现了非常强的压致振动耦合现象及高压非晶相。对于KTA,建立了Raman光谱变化与其倍频效率随压力提高之间的可能联系。在22 GPa以上,KI晶体的基本组成集团可能由IO3变为IO6。  相似文献   

16.
《中国物理 B》2021,30(6):66501-066501
We experimentally investigate effects of W~(6+)occupying the sites of Sc~(3+)in the unit cell of Sc_2 W_3 O_(12)(Sc_8 W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structure of the doped sample(Sc_6 W_2)W_(12) O_(48±δ)(with two W~(6+)occupying two sites of Sc~(3+)in the unit cell of Sc_8 W_(12) O_(48)) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W~(6+)occupying even Sc~(3+)in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc_2 W_3 O_(12), and with even W occupying even positions of Sc in the unit cell and constituting the WO_6 octahedra. Raman analyses show that the doped sample possesses stronger W–O bonds and wider Raman linewidths than those of Sc_2 W_3 O_(12). The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K–650 K.  相似文献   

17.
The kagome metals AV3Sb5(A=K,Rb,Cs)under ambient pressure exhibit an unusual charge order,from which superconductivity emerges.In this work,by applying hydrostatic pressure using a liquid pressure medium and carrying out electrical resistance measurements for RbV3Sb5,we find that the charge order becomes suppressed under a modest pressure pc(1.4 GPa3Sb5.Our findings point to qualitatively similar temperature-pressure phase diagrams in KV3Sb5 and RbV3Sb5,{and suggest a close link}between the second superconducting dome and the high-pressure resistance anomalies.  相似文献   

18.
Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a=0.5448 nm, b=1.2758 nm, c=1.9720 nm, density 1.513 g cm−3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a=1.990 nm, b=0.500 nm, c=1.240 nm, β=91.7°, density 1.681 g cm−3 (phase II, determined at 1.1 GPa) and a=1.890 nm, b=0.510 nm, c=1.242 nm, β=89.0°, density 1.733 g cm−3 (phase III, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a=0.465 nm, b=1.920 nm, c=1.230 nm and density 1.857 g cm−3. For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa−1 has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II–IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing.  相似文献   

19.
Ga-II, the stable phase of Ga between 2 and 10 GPa at room temperature, is shown to have a complex 104-atom orthorhombic structure. A new phase, Ga-V, is found between 10 and 14 GPa, with a rhombohedral hR6 structure. Ga-II has a modulated layer structure like those recently reported for Rb-III and Cs-III, with similar 8- and 10-atom a-b layers stacked along the c axis in the sequence 8-10-8-8-10-8-8-10-8-8-10-8. The cI16 structure of Li and Na can be understood as a stacking of very similar 8-atom layers. It is suggested that a Hume-Rothery mechanism contributes to the occurrence of these complex structures in such different metals.  相似文献   

20.

The phase relations and equations of state of ZrO 2 and HfO 2 high-pressure polymorphs have been investigated by means of in situ observation using multi-anvil type high-pressure devices and synchrotron radiation. Baddeleyite (monoclinic ZrO 2 ) transforms to two distorted fluorite (CaF 2 )-type phases at 3-4 GPa depending on temperature: an orthorhombic phase, orthoI, below 600 °C and a tetragonal phase, which is one of the high-temperature forms of ZrO 2 , above 600 °C. Both orthoI and tetragonal phases then transform into another orthorhombic phase, orthoII, with a cotunnite (PbCl 2 )-type structure above 12.5 GPa and the phase boundary is almost independent of temperature. OrthoII is stable up to 1800 °C and 24 GPa. In case of HfO 2 , orthoI is stable from 4 to 14.5 GPa below 1250-1400 °C and transforms to the tetragonal phase above these temperatures. OrthoII of HfO 2 appears above 14.5 GPa and is stable up to 1800 °C at 21 GPa. The unit cell parameters and the volumes of these high-pressure phases have been determined as functions of pressure and temperature. The orthoI/tetragonal-to-orthoII transition of both ZrO 2 and HfO 2 is accompanied by about 9% volume decrease. The bulk moduli of orthoII calculated using Birch-Murnaghan's equations of state are 296 GPa and 312 GPa for ZrO 2 and HfO 2 , respectively. Since orthoII of both ZrO 2 and HfO 2 are quenchable to ambient conditions, these are candidates for super-hard materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号