首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a fully developed laminar flow in a porous channel between two paralleled flat plates in the presence of a double layer electric field is analyzed. The linear Poisson-Boltzmann equation is suggested to model the double layer electric field near the solid-liquid interface. The equation of motion is extended by including the electrical body force generating from the double layer field and then solved analytically. Different from previous models, our proposed one is continuous in the whole flow field and matches commonly-accepted models in the field of fluid mechanics.Besides, the effects of various physical parameters such as the zeta potential, the electrokinetic separation distance, and the ratio of the streaming current to conduction current on the velocity, the pressure, the apparent viscosity of the fluid,as well as the streaming potential are discussed. Physical explanations on the changing trends of those physical quantities with various parameters are given.  相似文献   

2.
刘勇波  菅永军 《物理学报》2016,65(8):84704-084704
柔性纳米通道是在刚性纳米通道壁面处添加一层带某种电荷的聚电解质层或固定电荷层的纳米通道. 本文在低Zeta势近似下, 通过解析求解电势满足的线性化Poisson-Boltzmann方程和速度满足的Cauchy动量方程, 给出了圆柱形柔性纳米通道中电解质溶液的流向势和电动能量转换效率的解析解. 在表面Zeta势取值相同, 且管径相同(聚电解质层厚度远小于管径前提下)的情形下, 将圆柱形柔性纳米通道和刚性纳米通道中电解质溶液的流向势和电动转换效率进行了比较. 结果表明, 柔性纳米通道中的流向势和转换效率明显高于刚性通道中的流向势和转换效率. 在本文选取的参数范围内, 柔性纳米通道中的电动转换效率比刚性纳米通道中的转换效率提高1.5-3倍.  相似文献   

3.
A new model for investigating the non-uniform electric field and potential distribution of fluid flow and streamlines induced by non-uniform electric field with the induced charge in the electrical double layer on the electrode surfaces is presented. Accurate computation of the non-uniform electric field is a pre-requisite for observing fluid flow and streamlines. The electric field distribution is obtained from Laplace's and Neumann's equations. Finite Element Methods is adopted for this work. The simulation results has been compared with available experimental observations of the fluid flow profile obtained by superimposing images of particle movement in a plane normal to the electrode surface. A good agreement is found between the numerical and experimental streamlines.  相似文献   

4.
In the present study, the effect of slip boundary condition on the rotating electroosmotic flow (EOF) of Oldroyd-B fluid in a microchannel under high zeta potential is considered numerically. The potential distribution of the electric double layer (EDL) is acquired by solving the nonlinear Poisson-Boltzmann equation. The numerical solution of velocity profile is obtained by using a finite difference method. The effects of rotating Reynolds number, electric width, viscous parameter, slip parameter etc on velocity and boundary stress for Oldroyd-B fluid EOF are discussed, which show that the slip boundary effect can reduce the boundary stress and promote the development of flow.  相似文献   

5.
Electro-osmotic flow of a physiological fluid with prominent micropolar characteristics, flowing over a microchannel has been analyzed for a situation, where the system is subject to the action of an external AC electric field. In order to account for the rotation of the micro-particles suspended in the physiological fluid, the fluid has been treated as a micropolar fluid. The microchannel is considered to be bounded by two porous plates executing oscillatory motion. Such motion of the plates will normally induce oscillatory flow of the fluid. The governing equations of the fluid include a second-order partial differential equation depicting Gauss’s law of electrical charge distributions and two other partial differential equations of second order that arise out of the laws of conservation of linear and angular momenta. These equations have been solved under the sole influence of electrokinetic forces, by using appropriate boundary conditions. This enabled us to determine explicit analytical expressions for the electro-osmotic velocity of the fluid and the microrotation of the suspended micro-particles. These expressions have been used to obtain numerical estimates of important physical variables associated with the oscillatory electro-osmotic flow of a blood sample inside a micro-bio-fluidic device. The numerical results presented in graphical form clearly indicate that the formation of an electrical double layer near the vicinity of the wall causes linear momentum to reduce. In contrast, the angular momentum increases with the enhancement of microrotation of the suspended microparticles. The study will find important applications in the validation of results of further experimental and numerical models pertaining to flow in micro-bio-fluidic devices. It will also be useful in the improvement of the design and construction of various micro-bio-fluidic devices.  相似文献   

6.
周祥曼  张海鸥  王桂兰  柏兴旺 《物理学报》2016,65(3):38103-038103
电弧增材成形常采用单道多层或多道搭接的熔积方式,不同的熔积方式下对应的熔积层表面形貌不同,从而影响电弧的形态及其传热传质过程.本文建立了纯氩保护电弧增材成形的电弧磁流体动力学三维数值模型,以及不同表面形貌的熔积层模型,并在保持阳极与阴极之间距离和熔积电流不变的条件下,通过模拟计算获得增材成形特有的单道和多道搭接熔积条件下的不同表面形貌对应的电弧形态以及相应的温度场、流场、电流密度、电磁力、电弧压力分布.数值模拟结果表明:平面基板上起弧情况下电弧中心具有较高的温度、速度、电流密度以及压强;单道多层熔积情况下熔积层数对电弧的各个参量影响较小;多道搭接熔积情况下电弧呈非对称分布,电弧中心温度较前两者低,电流密度、电磁力和电弧压强的分布偏向熔积层一侧.  相似文献   

7.
辛艳辉  袁胜  刘明堂  刘红侠  袁合才 《中国物理 B》2016,25(3):38502-038502
The two-dimensional models for symmetrical double-material double-gate(DM-DG) strained Si(s-Si) metal–oxide semiconductor field effect transistors(MOSFETs) are presented. The surface potential and the surface electric field expressions have been obtained by solving Poisson's equation. The models of threshold voltage and subthreshold current are obtained based on the surface potential expression. The surface potential and the surface electric field are compared with those of single-material double-gate(SM-DG) MOSFETs. The effects of different device parameters on the threshold voltage and the subthreshold current are demonstrated. The analytical models give deep insight into the device parameters design. The analytical results obtained from the proposed models show good matching with the simulation results using DESSIS.  相似文献   

8.
Magnetic field plays an important role in numerous fields such as biological, chemical, mechanical and medical research. In clinical and medical research the high field magnets are extremely important to create 3D images of anatomical and diagnostic importance from nuclear magnetic resonance signals. In view of these applications, the purpose of present work is to explore the impact of an external magnetic field on the viscoelastic fluid flow in the existence of electroosmosis, porous medium and slip boundary conditions. The governing equation is modified under the suitable dimensionless quantities. The resulting non-dimensional differential equation is evaluated by analytical as well as numerical (finite difference and cubic B-spline) methods. The convergence analysis is also presented for the numerical methods. The variations of sundry parameters on velocity, volume flow rate and skin friction are presented through graphical representations. The current analysis depicts that, the higher velocities are noticed in viscoelastic fluid as compared with Newtonian fluid. The velocity enhances with rising of slip and Darcy parameters. Volume flow rate rises with the slip and viscoelastic parameters. Skin friction is a decreasing function of zeta potential, Darcy number and Hall current parameter. The limiting solutions can be captured for the Newtonian fluid model by setting the viscoelastic parameter to zero.  相似文献   

9.
The electrical structure of non-stationary horizontally-homogenous surface layer with multi-charged aerosol particles was mathematically modeled in the approximation of turbulent electrode effect. The profiles of positive and negative small ions and nuclei, electric field, polar air conductivity, current density and space charge density were computed in different time periods and various physical conditions. The mathematical model of non-stationary horizontally homogenous surface layer with aerosol particles was made regarding turbulent mixing and convective transport. The space-time distributions of positive and negative small ions and nuclei, electric field, electrical conductivity, current density and space charge density for various physical conditions (aerosol concentrations, turbulent mixing, convective transport, air ionization rate, electric field strength near surface, aerosol particles size) were received. Experimental data of electrical and meteorological parameters were measured and analyzed. It was received that theoretical results are in a good agreement with experimental data.  相似文献   

10.
The problem of steady streaming around a rigid isolated sphere in a plane standing acoustic field is considered. Existing results in the literature have been generalized to allow for noncompactness of the sphere, and the influence of fluid compressibility on the streaming behavior has been included. It is found that in the high-frequency limit of interest for which the streaming is strongest, the effective steady slip velocity at the edge of the inner boundary layer region that is responsible for driving the steady streaming in the bulk of the fluid in the outer region, has a complex variation over the surface of the sphere that depends on (i) the sphere position (with respect to the node/antinode of the acoustic field), (ii) the extent of sphere compactness, and (iii) on a well-defined function (representing compressibility effects) of the fluid Prandtl number and its ratio of specific heats. Not surprisingly, the contribution from this function is negligible when the host fluid is a liquid. The steady streaming behavior around the sphere is demonstrated with the help of flow streamlines for various cases in the diffusive limit of weak outer flow for low streaming Reynolds numbers.  相似文献   

11.
A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (–1) is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.  相似文献   

12.
《Physica A》1995,214(2):229-241
An analysis is made of the stability of a basic flow of streaming fluids in the presence of an oblique periodic electric field. The particular profile investigated is the classical Kelvin-Helmholtz profile modified by the addition of the influence of mass and heat transfer across the interface. The intervals of electrohydrodynamic Kelvin-Helmholtz instability are considered. It is shown that a linear model of the interface is governed by Hill's differential equation. Characteristic values and intervals of stability are discussed. The special case of the Mathieu differential equation type is obtained. From the latter equation, the various criteria are discussed for both Rayleigh-Taylor and Kelvin-Helmholtz problems in the presence of an oblique periodic electric field, with and without mass and heat transfer across the interface.  相似文献   

13.
关威  陈达  王军  胡恒山 《应用声学》2019,38(1):142-150
与双电层和孔隙流体渗流有关的声波-电磁场耦合效应(动电耦合波)在油气储层勘探、地震电磁场等领域有着潜在应用价值。该文简述动电耦合波在理论模型以及井孔动电耦合波的实验测量、模拟计算方面的研究进展,并对油气储层测井领域进一步的动电耦合波研究进行了展望。基于动电信号的探测方法同时接收声波和电磁场两类信号,可避免单一类别信号方法的不足。实验获得了岩心的动电耦合系数,但其表征的孔隙岩石物理性质还有待进一步认识。基于耦合控制方程,开展了震电波场的计算和分析。结果表明,声源激发后,可接收到伴随声波的电磁信号和早于声波的电磁首波。这两类信号都既对影响声波特性的岩石模量、孔隙度和渗透率等参数敏感,又与电导率等岩石电学性质密切相关。非饱和岩石动电耦合波理论和基于动电耦合波的参数反演方法等问题有待进一步研究。  相似文献   

14.
Based on the continuity hypothesis of fluid, 1-D mathematical models of ions’ transport in the rectangular nanofluidic channels are established by using the Poisson-Boltzmann (PB) equation and the modified Navier-Stokes (N-S) equations. The deduced equations are solved with MATLAB software. The results show that the distribution of the electric potential and the flow field could be predicted by the parameters, such as conductivity, surface charge density, solution concentration and channel height. The relationships between the parameters and the flow characteristics of the solution are also discussed. The research will help to the accurate manipulation of the solution in the nanofluidic channels.  相似文献   

15.
In this study, the streaming potential and electrokinetic energy conversion efficiency are discussed under the low zeta potential approximation through a microparallel channel with consideration of rotational effect. By solving Poisson-Boltzmann equation and modified Navier–Stokes equation, the analytical expressions of the streaming potential and electrokinetic energy conversion efficiency in the electrolyte solution are obtained. Combining with the numerical calculation, the influences of the dimensionless electrokinetic width K and the rotational angular velocity ω on streaming potential and the electrokinetic energy conversion efficiency are discussed. The results show that the streaming potential fields decrease both in mainstream and secondary directions with the electrokinetic width K, it decreases with the non-dimensional rotational angular velocity in the mainstream direction and it shows a first increasing then decreasing trend in the secondary flow direction. In addition, the influences of related non-dimensional parameters, including electrokinetic width, wall electric potential and rotational angular velocity, on the electrokinetic energy conversion efficiency are also discussed in detail. The rotating effect can enhance conversion efficiency comparing to the case of no rotation. The increase of wall electric potential gives rise to an augment in electrokinetic energy conversion efficiency. These theoretical results make sense to the energy harvesting in the rotating microfluidic systems.  相似文献   

16.
考虑二次梯度项影响的双渗模型的动态特征   总被引:10,自引:1,他引:9  
同登科  蔡郎郎 《计算物理》2002,19(2):177-182
在传统试井模型的非线性偏微分方程中根据弱可压缩液体的假设忽略了二次梯度项,已经知道在试井较长时间忽略二次梯度项将产生误差,故对于双重介质流动系统保留了非线性偏微分方程中的二次梯度项,建立了双渗流动模型.采用Douglas-Jones预估校正法获得了无限大地层定产量生产时和定压生产时双渗模型的数值解,分别讨论了液体压缩系数和双重介质参数变化时压力变化规律,做出了典型压力曲线图版,这些结果可用于实际试井分析.  相似文献   

17.
本文分别建立了含有本征SiGe层的SiGe HBT(异质结双极晶体管)集电结耗尽层各区域的电势、电场分布模型,并在此基础上,建立了集电结耗尽层宽度和延迟时间模型,对该模型进行了模拟仿真,定量地分析了SiGe HBT物理、电学参数对集电结耗尽层宽度和延迟时间的影响,随着基区掺杂浓度和集电结反偏电压的提高,集电结耗尽层延迟时间也随之增大,而随着集电区掺杂浓度的提高和基区Ge组分增加,集电结耗尽层延迟时间随之减小. 关键词: SiGe HBT 集电结耗尽层 延迟时间  相似文献   

18.
The dynamic evolution of the boundary between the ionosphere and auroral cavity is studied using 1D and 2D kinetic Vlasov simulations. The initial distributions of three singly ionized species (H+, O+, e-) are determined from space-based observations on both sides of an inferred strong double layer. The kinetic simulations reproduce features of parallel electric fields, electron distributions, ion distributions, and wave turbulence seen in satellite observations in the auroral upward-current region and, for the first time, demonstrate that auroral acceleration can be driven by a parallel electric field supported, in part, by a quasistable, strong double layer. In addition, the simulations verify that the streaming interaction between accelerated O+ and H+ populations continuously replenished by the double layer provides the free energy for the persistent formation of ion phase-space holes.  相似文献   

19.
姜玉婷  齐海涛 《物理学报》2015,64(17):174702-174702
研究了微平行管道内非牛顿流体––Eyring 流体在外加电场力和压力作用下的电渗流动. 在考虑微尺度效应, 电场作用, 非牛顿特性, 滑移边界等情况下, 建立Eyring流体在微平行管道内电渗流动的力学模型. 通过解线性Possion-Boltzmann方程和Cauchy动量方程, 给出Eyring 流体速度分布的精确解和近似解析解, 并探讨了上述因素对电渗流动的影响. 将电场力和压力对于Eyring流体电渗流动的速度分布的影响进行了比较分析, 得到有意义的结果.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号