首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The splitting induced by soft supersymmetry (SUSY) breaking inside the light composite supermultiplets of confining SUSY gauge theories is studied by effective lagrangian methods. Examples with and without unbroken chiral symmetries are considered. In the former case, for a suitable breaking, the lightest states are spin-12 fermions. A prototype model for one leptonic family is discussed.  相似文献   

2.
We investigate how in supersymmetric gauge theories non-perturbative effects are able to generate non-trivial vacuum properties otherwise forbidden by perturbative non-renormalization theorems. This conclusion can be reliably drawn since the constancy of certain Green functions — due to supersymmetry (SUSY) — allows one to connect vacuum-dominated large distances with short-distance behaviour which is reliably computed by instanton methods. In all the cases we discuss (without matter, with massive or massless matter in real representations and, finally, with matter in complex representations) instanton calculations imply the occurrence of a variety of condensates. For the pure SUSY gauge theory, a gluino condensate induces the spontaneous breaking of Z2N. For massive super-quantum chromodynamics (SQCD) we find a peculiar mass dependence of matter condensates whose origin is traced to mass singularities of non-zero mode instanton contributions. These contributions force the massless limit of SQCD to differ from the strictly massless case, in which the spontaneous breaking of chiral symmetries is induced. Inconsistency with an anomaly equation forces either infinite matter condensates or spontaneous SUSY breaking in the massless cases. For non-constant Green functions, instantons are shown to provide new calculable short-distance singularities of an obvious non-perturbative nature.  相似文献   

3.
4.
《Nuclear Physics B》1999,551(3):515-548
We show how identification of absolutely flat directions allows the construction of a new class of compactified string theories with reduced gauge symmetry that may or may not be continuously connected to the original theory. We use this technique to construct a class of three generation models with just the Standard Model gauge group after compactification. We discuss the low-energy symmetries necessary for a phenomenologically viable low-energy model and construct an example in which these symmetries are identified with string symmetries which remain unbroken down to the supersymmetry breaking scale. Remarkably the same symmetry responsible for stabilising the nucleon is also responsible for ensuring one and only one pair of Higgs doublets is kept light. We show how the string symmetries also lead to textures in the quark and lepton mass matrices which can explain the hierarchy of fermion masses and mixing angles.  相似文献   

5.
We study phenomenological features in an extended gauge mediation SUSY breaking model that has non-universal gaugino masses and CP phases. We show that large CP phases in soft SUSY breaking parameters can be consistent with the constraints coming from the electric dipole moment (EDM) of an electron, a neutron, and also a mercury atom. Masses of the superpartners are not necessarily required to be larger than 1 TeV but allowed to be O(100) GeV. We also investigate the mass spectrum of Higgs scalars and their couplings to gauge bosons in that case. Compatibility of this model with the present experimental data on the Higgs sector is discussed.  相似文献   

6.
The axion solution to the strong CP problem makes use of a global Peccei–Quinn U(1) symmetry which is susceptible to violations from quantum gravitational effects. We show how discrete gauge symmetries can protect the axion from such violations. PQ symmetry emerges as an approximate global symmetry from discrete gauge symmetries. Simple models based on ZN symmetries with N=11,12, etc., are presented realizing the DFSZ axion and the KSVZ axion. The discrete gauge anomalies are canceled by a discrete version of the Green–Schwarz mechanism. In the supersymmetric extension our models provide a natural link between the SUSY breaking scale, the axion scale, and the SUSY-preserving μ term.  相似文献   

7.
《Physics letters. [Part B]》2004,578(3-4):259-268
We study the curvaton scenario using the MSSM flat directions in the gauge-mediated SUSY breaking model. We find that the fluctuations in the both radial and phase directions can be responsible for the density perturbations in the universe through the curvaton mechanism. Although it has been considered difficult to have a successful curvaton scenario with the use of those flat directions, it is overcome by taking account of the finite temperature effects, which induce a negative thermal logarithmic term in the effective potential of the flat direction.  相似文献   

8.
We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a Linear Collider (LC) with up to 500 GeV. In particular, we refer to a high-luminosity ( cm s) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. We assess the potential of the LC to distinguish between the various SUSY model options and to measure the underlying parameters with high precision, including for those scenarios where a clear SUSY signal would have already been detected at the LHC before starting the LC operations. Our focus is on the case where a neutralino () is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass and lifetime are proposed and simulated in detail. We show that these methods can cover most of the lifetime range allowed by perturbativity requirements and suggested by cosmology in GMSB models. Also, they are relevant for any general low-energy SUSY breaking scenario. Values of as short as 10's of m and as long as 10's of m can be measured with errors at the level of 10% or better after one year of LC running with high luminosity. We discuss how to determine a narrow range () for the fundamental SUSY breaking scale , based on the measured , . Finally, we suggest how to optimise the LC detector performance for this purpose. Received: 19 May 1999 / Published online: 8 December 1999  相似文献   

9.
Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in .2 C 1/ dimensions ('graphinos') in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one.  相似文献   

10.
We propose a new approach to generate messenger–matter interactions in deflected anomaly mediated SUSY breaking mechanism from typical holomorphic messenger–matter mixing terms in the Kahler potential. This approach is a unique feature of AMSB and has no analog in GMSB-type scenarios. New coupling strengths from the scaling of the (already known) Yukawa couplings always appear in this approach. With messenger–matter interactions in deflected AMSB, we can generate a realistic soft SUSY breaking spectrum for next-to-minimal supersymmetric standard model (NMSSM). Successful electroweak symmetry breaking conditions, which is not easy to satisfy in NMSSM for ordinary AMSB-type scenario, can be satisfied in a large portion of parameter space in our scenarios. We study the relevant phenomenology for scenarios with (Bino-like) neutralino and axino LSP, respectively. In the case of axino LSP, the SUSY contributions to \(\Delta a_\mu \) can possibly account for the muon \(g-2\) discrepancy. The corresponding gluino masses, which are found to below 2.2 TeV, could be tested soon at LHC.  相似文献   

11.
Yu Y  Yang K 《Physical review letters》2010,105(15):150605
We study a cold atom-molecule mixture in two-dimensional optical lattices. We show that, by fine-tuning the atomic and molecular interactions, the Wess-Zumino supersymmetry (SUSY) model in 2+1 dimensions emerges in the low-energy limit and can be simulated in such mixtures. At zero temperature, SUSY is not spontaneously broken, which implies identical relativistic dispersions of the atom and its superpartner, a bosonic diatom molecule. This defining signature of SUSY can be probed by single-particle spectroscopies. Thermal breaking of SUSY at a finite temperature is accompanied by a thermal Goldstone fermion, i.e., phonino excitation. This and other signatures of broken SUSY can also be probed experimentally.  相似文献   

12.
余扬政  陈熊熊 《物理学报》1993,42(2):214-222
构造了一类超势W=(1/n)gφn的二维O(N)对称超对称模型,详细计算了此类模型的Witten指数△。结果表明,当n为偶数时,超对称一定不能破缺,而当n为奇数时,超对称可以破缺。利用大N展开法,还研究了上述模型的超对称自发破缺机制,同时给出了相应的粒子谱。 关键词:  相似文献   

13.
We report the results of a search for supersymmetry (SUSY) with gauge-mediated breaking in the missing transverse energy distribution of inclusive diphoton events using 263 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2004. No excess is observed above the background expected from standard model processes, and lower limits on the masses of the lightest neutralino and chargino of about 108 and 195 GeV, respectively, are set at the 95% confidence level. These are the most stringent limits to date for models with gauge-mediated SUSY breaking with a short-lived neutralino as the next-to-lightest SUSY particle.  相似文献   

14.
Using the universal X-superfield that measures in the UV the violation of conformal invariance we build up a model of multifield inflation. The underlying dynamics is the one controlling the natural flow of this field in the IR to the goldstino superfield once SUSY is broken. We show that flat directions satisfying the slow-roll conditions exist only if R-symmetry is broken. Naturalness of our model leads to scales of SUSY breaking of the order of 1011–13 GeV, a nearly scale-invariant spectrum of the initial perturbations and negligible gravitational waves. We obtain that the inflaton field is lighter than the gravitino by an amount determined by the slow-roll parameter η. The existence of slow-roll conditions is directly linked to the values of supersymmetry and R-symmetry breaking scales. We make cosmological predictions of our model and compare them to current data.  相似文献   

15.
本文简要介绍对称性及其破缺的概念和基本的数学上所说的幺正对称性等的微观粒子实现,从而为利用抽象的数学描述物理问题奠定基础。本文还简要介绍早期宇宙强相互作用物质演化过程的对称性及其破缺,尤其是可见物质质量的产生(比如DCSB)以及强相互作用等基本相互作用的规范对称性和破缺,为有意向探讨早期宇宙强相互作用物质演化的青年学者和研究生提供必要的知识储备,并打开一扇窗口。同时,还简要讨论原子核的对称性及其破缺,尤其是作为强相互作用多体系统的束缚态研究中的基本理论方法、(多粒子)壳模型及相互作用玻色子近似模型(IBM)、集体运动的描述及集体运动模式演化(形状相变)的研究方法及进展简况,提供一些在基本理论方法与前沿研究课题之间建立桥梁的实例。  相似文献   

16.
We give explicit expressions for the amplitudes associated with the supersymmetric (SUSY) contributions to the process in the context of SUSY extensions of the standard model (SM) with non-universal soft SUSY breaking terms. From experimental data we deduce limits on the squark mass insertions obtained from different contributions (gluinos, neutralinos and charginos). Received: 20 April 2001 / Revised version: 14 December 2001 / Published online: 5 April 2002  相似文献   

17.
We reconsider the dimension-11 Planck scale, the physical scale of the eleventh dimension, the physical scale of the Calabi–Yau manifold and the coupling in the hidden sector in M-theory on . Also we discuss reasonable bounds on them. Considering the F-term of the dilaton and moduli SUSY breaking and choosing two representative points which correspond to the scalar quasi-massless scenario and the dilaton dominant SUSY breaking scenario, respectively, we analyze experimental constraints on the parameter space. The sparticle spectrum and some phenomenological predictions are also given. Received: 9 June 1999 / Revised version: 12 July 2000 / Published online: 27 November 2000  相似文献   

18.
We construct N=1 supersymmetric (SUSY) field theory in 4+2 dimensions compatible with the theoretical framework of two-time (2T) physics and its gauge symmetries. The fields are arranged into 4+2 dimensional chiral and vector supermultiplets, and their interactions are uniquely fixed by SUSY and 2T physics gauge symmetries. In a particular gauge the 4+2 theory reduces to ordinary supersymmetric field theory in 3+1 dimensions without any Kaluza-Klein remnants, but with some additional constraints in 3+1 dimensions of interesting phenomenological relevance. This construction is another significant step in the development of 2T physics as a structure that stands above 1T physics.  相似文献   

19.
If supersymmetry (SUSY) will be discovered, successful models of flavour not only have to provide an explanation of the flavour structure of the Standard Model fermions, but also of the flavour structure of their scalar superpartners. We discuss aspects of such “SUSY flavour” models, towards predicting both flavour structures, in the context of supergravity (SUGRA). We point out the importance of carefully taking into account SUSY-specific effects, such as 1-loop SUSY threshold corrections and canonical normalisation, when fitting the model to the data for fermion masses and mixings. This entangles the flavour model with the SUSY parameters and leads to interesting predictions for the sparticle spectrum. We demonstrate these effects by analyzing an example class of flavour models in the framework of an SU(5) Grand Unified Theory with a family symmetry with real triplet representations. For flavour violation through the SUSY soft breaking terms, the class of models realises a scheme we refer to as “Trilinear Dominance”, where flavour violation effects are dominantly induced by the trilinear terms.  相似文献   

20.
We examine the process B-->X(s)gamma in minimal supersymmetry (SUSY) with general squark flavor mix-ings. We include all relevant next-to-leading order (NLO) QCD corrections and dominant NLO SUSY effects from the gluino. We find that gluino-squark corrections to down-type quark masses induce large NLO corrections to the dominant Wilson coefficients whose size is often similar to those at LO, es-pecially at large tan(beta. For micro>0, destructive interference and suppression by the renormalization group running lead to a "focusing effect" of reducing the size of gluino corrections to the branching ratio, and also of reducing the LO sensitivity to flavor mixings among squarks. Constraints from B(B-->X(s)gamma) on the SUSY-breaking scale can become significantly weakened relative to the minimal flavor violation case, even, at large tan(beta, for small flavor mixings. The case of micro<0 also becomes allowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号