首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a fully automated gearbox fault diagnosis approach that does not require knowledge about the specific gearbox construction and its load. The proposed approach is based on evaluating an adaptive filter’s prediction error. The obtained prediction error’s standard deviation is further processed with a support-vector machine to classify the gearbox’s condition. The proposed method was cross-validated on a public dataset, segmented into 1760 test samples, against two other reference methods. The accuracy achieved by the proposed method was better than the accuracies of the reference methods. The accuracy of the proposed method was on average 9% higher compared to both reference methods for different support vector settings.  相似文献   

2.
针对变速箱的工作时间不能真实反映实际健康状况的问题,通过提取变速箱的振动信号作为状态参数,建立了基于BP神经网络的变速箱故障诊断模型。该模型首先提取振动信号中对故障反映灵敏的成分作为特征值,获得BP神经网络的训练数据,并通过对比确定最优的隐含层节点数,确定BP神经网络的结构参数。模型训练结束后,以验证数据为例进行故障诊断研究,并对诊断结果进行评估。评估结果表明,该模型准确度高,具有较好的应用和推广价值。  相似文献   

3.
张曹  陈珺  刘飞 《应用声学》2017,25(12):13-16
在复杂环境下齿轮箱信号往往会淹没在噪声信号中,特征向量难以提取;为了有效地进行故障诊断,提出了基于最大相关反褶积(MCKD)总体平均经验模态分解(EEMD)近似熵和双子支持向量机(TWSVM)的齿轮箱故障诊断方法;首先采用MCKD方法对强噪声信号进行滤波处理,在采用EEMD方法对齿轮箱信号进行分解,分解后得到本征模函数(IMF)分量进行近似熵求解,得到齿轮特征向量,最后将其输入到TWSVM分类器中进行故障识别;仿真实验表明,采用MCKD-EEMD方法能够有效地提取原始信号,与其他分类器相比,TWSVM的计算时间短,分类效果好等优点。  相似文献   

4.
孙瑶琴 《应用声学》2017,25(3):48-50, 54
支持向量机(SVM)作为当前新型的机器学习方式,凭借解决小样本问题、高维问题和局部极值问题等方面的优越性,在当前故障诊断方面有突出的表现;文章根据对支持向量机的研究,发现其在分类模型参数选择上存在困难,为此,提出利用改进粒子群算法优化的办法,解决粒子群前期收敛速度过快导致后期容易优化不均的现象;通过粒子群算法优化与支持向量机分类模型结合,以轴承故障检测和诊断为例,分析次方法的优越性和提高支持向量机在故障诊断过程中的精准度;通过实际检测得出,这种算法优化的方法改进的支持向量机对于聚类性较差的故障分类具有很好的诊断功能。  相似文献   

5.
SAB型列车防滑制动系统应用于国内T型列车,数量多,为了提高列车防滑器主机故障检测和维修效率,针对SAB WABCO公司的SWKAS20C型列车防滑器主机,设计了元件级故障检测与定位专家系统。通过研究模拟电子电路故障诊断技术,设计了基于支持向量机的多故障分类器,用于主机模拟电路故障样本数据的训练和测试,并通过改进算法寻优向量机参数,提高了故障诊断的准确度。搭建了模拟列车运行环境的测试平台,用以模拟主机在多种状态下的故障模式;使用VS2010开发环境编写了MFC专家系统。  相似文献   

6.
The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.  相似文献   

7.
As a complex field-circuit coupling system comprised of electric, magnetic and thermal machines, the permanent magnet synchronous motor of the electric vehicle has various operating conditions and complicated condition environment. There are various forms of failure, and the signs of failure are crossed or overlapped. Randomness, secondary, concurrency and communication characteristics make it difficult to diagnose faults. Meanwhile, the common intelligent diagnosis methods have low accuracy, poor generalization ability and difficulty in processing high-dimensional data. This paper proposes a method of fault feature extraction for motor based on the principle of stacked denoising autoencoder (SDAE) combined with the support vector machine (SVM) classifier. First, the motor signals collected from the experiment were processed, and the input data were randomly damaged by adding noise. Furthermore, according to the experimental results, the network structure of stacked denoising autoencoder was constructed, the optimal learning rate, noise reduction coefficient and the other network parameters were set. Finally, the trained network was used to verify the test samples. Compared with the traditional fault extraction method and single autoencoder method, this method has the advantages of better accuracy, strong generalization ability and easy-to-deal-with high-dimensional data features.  相似文献   

8.
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)).  相似文献   

9.
针对电网故障信息存在丢失、误动、拒动等不确定性问题,文章采用概率盒理论和支持向量机相结合的方法对电网故障进行诊断,充分利用概率盒在处理不确定问题上的优势。首先利用概率盒对故障录波、电气量等数据建模,然后利用融合规则将得到的多个概率盒进行融合,并提取特征向量。最后,利用支持向量机进行分类,并得出诊断结果。为了验证方法的有效性,采用仿真线路进行概率盒的故障诊断,实验验证该方法合理可行,且有较高的诊断率。  相似文献   

10.
Fault diagnosis of wind turbines is of great importance to reduce operating and maintenance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on single faults, and the methods for combined faults usually depend on inefficient manual analysis. Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT) machine learning based fault diagnosis method for combined fault of wind turbines, which can identify the fault type of wind turbines simply and efficiently without human experience and with low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine (SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models, the proposed model has superiority for this classification problem.  相似文献   

11.
An effective fault diagnosis method of bearing is the key to predictive maintenance of modern industrial equipment. With the single use of equipment failure mechanism or operation of data, it is hard to resolve multiple complex variable working conditions, multiple types of fault and equipment malfunctions and failures related to knowledge and data. In order to solve these problems, a fault diagnosis method based on the fusion of deep learning with a knowledge graph is proposed in this paper. Firstly, the knowledge rules of bearing data is used for entity extraction. Next, the multiscale optimized convolutional neural network (MOCNN) proposed in this paper is used for fault classification to achieve relationship extraction. Finally, the fault diagnosis graph of the bearing is constructed for fault-assisted decision-making as well as the detailed display of fault information. According to experiment analysis, the fault diagnosis model based on MOCNN proposed in this paper, which integrates the end-to-end convolutional neural network and the attention mechanism, still achieves an accuracy of 97.86% under the data set of 160 types of faults. Compared with the deep learning models such as Resnet and Inception in the noise environment of multiple working conditions and variable working conditions, the model proposed in this paper not only shows a faster convergence speed and stable performance, but also a higher accuracy in evaluation indicators, which is beneficial to practical use.  相似文献   

12.
孟玲玲  崔蕾  韩宝如 《应用声学》2012,(6):1483-1485
针对标准遗传算法优化BP神经网络收敛慢,易陷入局部最优的问题,提出了改进的多种群协同进化遗传算法,该算法改变了以往的随机初始化方法,采用了附加混沌扰动的tent映射初始化均匀分布的种群,提高了初始解的质量;每个种群采用自适应交叉率和变异率,引入移民算子实现种群间的横向联系;算法通过多种群的协同进化和种群间的个体移植提高了算法的搜索均匀性和效率;仿真实验表明该算法误差小,收敛速度快,诊断正确率高,较好地解决了模拟电路的软故障诊断问题。  相似文献   

13.
We examine statistical properties of a daily hot pixel time series recorded in Brazil during the period 1998–2006, using Multifractal Detrended Fluctuation Analysis (MF-DFA). We find that generalized scaling exponent h(q)h(q) is a decreasing function of qq, indicating multifractal behavior of hot pixel dynamics. We also calculate multifractal spectra f(α)f(α) and use fourth-degree polynomial regression to estimate complexity parameters that describe the degree of multifractality of the underlying process. After July 2002, when a significant increase of the number of hot pixel observations is recorded, the complexity of the series is reduced (manifested by the reduction of width of the f(α)f(α) spectrum), while small fluctuations increase their dominance over large scale fluctuations (manifested by the increase of skew parameter rr). These results should be taken into account when devising ecological and climatic models for Brazil, that contemplate the phenomena of wild-land and forest fires.  相似文献   

14.
针对轴承振动信号具有的非平稳和故障诊断样本数据难以按需获取的问题,设计了一种基于小波包分解和EMD-SVM的故障诊断方法。首先,采用Mallat塔式算法对信号进行降噪,实现信号的小波分解,获得重构后的故障诊断子频带信号。然后,在经典的EMD算法的基础上定义了改进的EMD算法,采用改进的EMD算法对经过小波包降噪的故障诊断子频带信号进行特征提取,从而获得故障诊断特征向量。最后,采用适合小样本分类的SVM进行故障诊断,将经过小波包降噪和EMD特征提取的样本数据用于训练SVM,得到用于故障诊断的多个二分类SVM故障诊断模型,通过投票机制来确定样本数据最终对应的故障诊断类别。在Matlab环境下对轴承故障诊断进行实验,实验结果证明了文中基于小波包和EMD-SVM的方法一种适用于小样本的故障诊断方法,且与其它方法相比,具有诊断效率高和精度高的优点。  相似文献   

15.
针对轴承振动信号中的故障信息往往很微弱,同时振动样本数据分布不平衡即故障样本占总样本数的比例低,从而导致故障诊断模型训练不精确而影响诊断精度的问题,提出了一种基于拉普拉斯分值和超球大间隔支持向量机的故障诊断方法。首先,采用有标签的训练样本数据和拉普拉斯分值法提取原始振动信号中的微弱故障信息,并降低其数据维数,从而得到用于故障诊断的特征向量,然后设计了一种改进的超球大间隔支持向量机的故障诊断模型,通过最小化超球体积和最大化超球边界和故障样本之间的间隔来实现故障诊断,以解决样本的不均衡问题,最终通过将测试样本数据代入决策方程并通过投票机制确定其故障类别。在Matlab环境下对轴承故障诊断进行实验,实验结果证明了文中方法能有效解决样本的不均衡情况下的故障诊断,且相对其它方法,具有诊断精度高和收敛速度快的优点。  相似文献   

16.
【】本文针对过拟合现象提出了基于提前停止法的学习率可变BP算法,运用多级BP神经网络诊断思想,提出了基于多级BP神经网络的多故障诊断方法。文中根据BP神经网络改进算法和网络撕裂法,对具体的机载无线电罗盘测向电路建模仿真,将复杂的无线电罗盘电路分解为3个子网络,并对每个子网络建立合适的故障集,快速准确诊断得出电路中的故障模块。  相似文献   

17.
The vibration signal of gearboxes contains abundant fault information, which can be used for condition monitoring. However, vibration signal is ineffective for some non-structural failures. In order to resolve this dilemma, infrared thermal images are introduced to combine with vibration signals via fusion domain-adaptation convolutional neural network (FDACNN), which can diagnose both structural and non-structural failures under various working conditions. First, the measured raw signals are converted into frequency and squared envelope spectrum to characterize the health states of the gearbox. Second, the sequences of the frequency and squared envelope spectrum are arranged into two-dimensional format, which are combined with infrared thermal images to form fusion data. Finally, the adversarial network is introduced to realize the state recognition of structural and non-structural faults in the unlabeled target domain. An experiment of gearbox test rigs was used for effectiveness validation by measuring both vibration and infrared thermal images. The results suggest that the proposed FDACNN method performs best in cross-domain fault diagnosis of gearboxes via multi-source heterogeneous data compared with the other four methods.  相似文献   

18.
恒星的分类对了解恒星和星系形成与演化历史具有重要的研究价值。面对大型巡天计划及由此产生的海量数据,如何迅速准确地将天体自动分类显得尤为重要。通过对SDSS DR9的恒星光谱数据进行深度置信神经网络(DBN)、神经网络和支持向量机(SVM)等算法分类的对比,分析三种自动光谱分类方法在恒星分类上的适用性。首先利用上述三种方法对K,F恒星进行识别分类,然后再分别对K1,K3和K5次型和F2,F5,F9次型识别,最后基于SVM支持向量机的二次分类模型,利用K次型的数据,构建剔除不属于K次型的模型。结果表明:深度置信网络对K,F型恒星分类效果较好,但是对K,F次型的分类效果不佳;SVM支持向量机在K,F型恒星分类以及相应的次型分类都具有较好的识别率,对K,F型分类效果要好于K,F次型的分类效果;BP神经网络对K,F型恒星以及其次型的识别一般;在剔除不属于K次型实验中,剔除率高达100%,可知SVM能够对未知的光谱数据进行筛选与分类。  相似文献   

19.
谢永成  黄捷音  李光升  董今朝 《应用声学》2014,22(11):3627-3629
为了能够准确地进行装甲车辆电源系统的故障诊断,深入地研究了故障树分析法在其中的应用;首先,以某型装甲车辆电源系统为研究对象,根据系统失效模型和故障机理,将故障树分析法运用于装甲车辆电源系统故障诊断中,建立电源系统故障树模型,进行故障分析与诊断;其次利用电源系统故障诊断平台对电源系统4个模块进行故障模拟仿真研究,可看出故障树分析法能够准确地诊断出电源系统各个模块的故障,检测精度可达94%,取得了预期效果。  相似文献   

20.
针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析 (Dynamic Principal Component Analysis, DPCA)和最小二乘支持向量机(Least Square Support Vector Machine, LSSVM)的飞机发动机润滑系统异常状态识别方法。首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别。以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号