首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role the polarization force acting on dust particles may play on the energy carried by the dust‐acoustic (DA) soliton is examined. This force is due to the deformation of the Debye sheath around the dust particulates in the background of non‐uniform plasmas. The energy carried by the DA solitons is derived. This energy decreases with an increase in the effects of plasma‐dust particles polarization interaction. This means that when the magnitude of the polarization force approaches the one of the electrical force, i.e, the net force acting on the grains decreases, the DA soliton energy experiences a depletion. As noticed by Khrapak et al. [S.A. Khrapak et al., Phys. Rev. Lett. 102 , 245004 (2009)], when the polarization force dominates over the electrical one, the plasma can not support DA solitons. This happens whenever the dust grain size exceeds a critical threshold. In this case, the net force acting on the grains is no longer a restoring force. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system.  相似文献   

3.
4.
张永亮  冯帆  刘富成  董丽芳  贺亚峰 《中国物理 B》2016,25(2):25201-025201
Hypocycloid and epicycloid motions of irregular grains(pine pollen) are observed for the first time in a dust plasma in a two-dimensional(2D) horizontal plane. These cycloid motions can be regarded as a combination of a primary circle and a secondary circle. An inverse Magnus force originating from the spin of the irregular grain gives rise to the primary circle.Radial confinement resulting from the electrostatic force and the ion drag force, together with inverse Magnus force, plays an important role in the formation of the secondary circle. In addition, the cyclotron radius is seen to change periodically during the cycloid motion. Force analysis and comparison experiments have shown that the cycloid motions are distinctive features of an irregular grain immersed in a plasma.  相似文献   

5.
张鑫  宋小会  张殿琳 《中国物理 B》2010,19(8):86802-086802
<正>The grain size and surface morphology of sputtered Au films are studied by x-ray diffraction and atomic force microscope.For as-deposited samples the grain growth mechanism is consistent with the two-dimensional(2D) theory, which gives relatively low diffusion coefficient during deposition.The annealing process demonstrates the secondary grain growth mechanism in which the thickness dependence of grain boundary energy plays a key role.The surface roughness increases with the increase of grain size.  相似文献   

6.
The force on a charged dust grain in a plasma due to polarization of thermal ions and degenerate electrons around the grain is derived in the limits of weakly relativistic and ultra-relativistic degeneracy of electrons. It is found that in both these cases, the magnitude of the polarization force is enhanced compared to that in classical plasmas. The influence of this force on dust-acoustic(DA) modes is examined and discussed. It is shown that the DA wave frequency in degenerate plasmas is significantly reduced compared to the classical DA mode.  相似文献   

7.
The transverse force on a spherical charged grain lying in the plasma wake of another grain is analyzed to assess the importance of ion-drag perturbation, in addition to the wake-potential-gradient. The ion-drag perturbation is intrinsically one order smaller than the wake-potential force in the ratio of grain size (r(p)) to Debye length (λ(De)). So ion-drag perturbation is important only in nonlinear wakes. Rigorous particle-in-cell calculations of the force are performed in the nonlinear regime with two interacting grains. It is found that even for quite large grains, r(p)/λ(De)=0.1, the force is dominated by the wake-potential gradient. The wake-potential structure can then help explain the preferred alignment of floating dust grains.  相似文献   

8.
The transport of particles (“dust”) in low pressure electrical glow discharges is being studied in regard to its role in contaminating silicon wafers during plasma etching and deposition. Particles (10 s nm-μm) negatively charge in glow discharges and, to first order, appear to be massively large negative ions around which sheaths develop. The forces on particles in plasmas include electrostatic (drift of charged particles in electric fields) and viscous ion drag. The latter force is momentum transfer from ions to particles by either collisions or orbital motion. This force critically depends on the charge on the particle and the shape of the sheath surrounding the particle. In this work, we report on a pseudoparticle-in-cell (PIC) simulation of the transport of electrons and ions in the vicinity of dust particles in low pressure glow discharges. The simulation produces the electrical charge on the dust particle, the sheath structure around the dust particle and the orbital dynamics of the ions. A companion molecular dynamics simulation uses these parameters to produce ion-dust and electron-dust particle cross sections for momentum transfer and collection. Results will be discussed for charge, sheath thickness, cross sections and viscous ion drag forces on dust particles as a function of radius and plasma parameters  相似文献   

9.
《Physics letters. A》2020,384(25):126462
The effects of dust charge gradient (DCG) force and polarization force have been investigated on the properties of dust acoustic wave (DAW) and linear Jeans instability in strongly coupled dusty plasma. In the kinetic regime, DCG and polarization forces modify the DAW mode and couple with compressional viscoelastic wave mode. The Jeans instability criterion and critical wavenumber have been modified due to DCG force, polarization force and strong coupling effects. The results have been discussed in the warm photodisassociation region and in the laboratory complex plasmas. The strong correlation effect and the charge variation parameter stabilize the growth rate of Jeans instability. But, the polarization parameter stabilize the growth rate for positively charged dust grains and destabilize for negatively charged dust grains. The implications of charge gradient and polarization parameters are discussed for lower and higher charges in the laboratory complex plasma which decreases the growth of the propagating DAW.  相似文献   

10.
宫卫华  张永亮  冯帆  刘富成  贺亚峰 《物理学报》2015,64(19):195202-195202
本文研究了在非均匀磁场尘埃等离子体中不规则尘埃颗粒的复杂运动, 包括圆滚运动、尖头圆滚运动、圆周运动以及波浪运动等. 放置在电极上的圆柱形磁铁的主要作用是改变鞘层的径向分布, 进而对颗粒产生径向约束, 使尘埃颗粒悬浮于圆柱形磁铁周围, 其磁场并不足以磁化颗粒使其做圆滚运动. 通过与球形尘埃颗粒的对比实验发现, 圆滚运动是不规则尘埃颗粒在等离子体中特有的一种运动. 我们提出了一种新的机理: 由于不规则颗粒的自旋而引起的横向反Magnus力对颗粒的圆滚运动起了重要的作用. 文中通过受力分析定性地对实验中观察到的非球形颗粒的各种运动给出了合理的解释.  相似文献   

11.
In this note the phenomena of formation of grain bulbs (compact grain structure) in presence of grains with different size is discussed from point of view of grain force balance. The requirement is found showing where in the equilibrium conditions the larger size grains are expelled from the regions of smaller size grains forming dust bulbs containing only the smallest size grains. The experiments where this phenomenon was observed are discussed. It is possible to conclude that these experiments can serve as direct evidence for existence of the non‐linear screening of individual grains and for excitation of collective large scale electric fields that balances the drag forces in domain of structures. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In the present work the dynamics of dust particles near electric probe in gas discharge at different pressures was studied. Trajectories of dust particles near electric probe with taking into account of the ion drag force and neutral friction force were calculated numerically. The comparisons between experimental and calculated results showed the good agreement (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Previous considerations of dust acoustic waves is demonstrated to be inconsistent ‐ the required equilibrium state for perturbations was not defined since balance of plasma fluxes was neglecting. The self‐consistent treatment shows that plasma flux perturbations are accompanying any collective waves propagating in dusty plasmas and can play an important role in wave dispersion, wave damping and can create instabilities. This is illustrated by the derivation of dispersion relation for dust acoustic modes taking into account the plasma flux balances and plasma flux perturbations by waves. The result of this approach shows that the dust acoustic waves with linear dependence of wave frequency on the wave number exist only in restricted range of the wave numbers. Only for wave numbers larger than some critical wave number for low frequency modes the frequency can be have approximately a linear dependence on wave number and can be called as dust acoustic wave but the phase velocity of these waves is different from that which can be obtained neglecting the flux balance and depends on grain charge variations which are determined by the balance of fluxes. The presence of plasma fluxes previously neglected is the main typical feature of dusty plasmas. The dispersion relation in the range of small wave numbers is found to be mainly determined by the change of the plasma fluxes and is quite different from that of dust acoustic type, namely it is found to have the same form as the well known dispersion relation for the gravitational instability. This result proves in general way the existence of the collective grain attractions of negatively charged grains for for large distances between them and for any source of ionization. The attraction of grains found from dispersion relation of the dust acoustic branch coincides with that found previously for pair grain interactions using some models for the ionization source. For the existing experiments the effective Jeans length for such attraction is estimated to be about 8 – 10 times larger than the ion Debye length and the effective gravitational constant for the grain attraction is estimated to be several orders of magnitude larger than the usual gravitational constant. The grain attraction at large inter‐grain distances described by the gravitationlike grain instability is considered as the simplest explanation for observed dust cloud clustering, formation of dust structures including the plasma crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
P K Karmakar 《Pramana》2007,68(4):631-648
Application of inertia-induced acoustic excitation theory offers a new resonant excitation source channel of acoustic turbulence in the transonic domain of plasma flow. In bi-ion plasmas like colloidal plasma, two well-defined transonic points exist corresponding to the parent ion and the dust grain-associated acoustic modes. As usual, the modified ion acoustic mode (also known as dust ion-acoustic (DIA) wave) dynamics associated with parent ion inertia is excitable for both nanoscale-and micronscale-sized dust grains. It is found that the so-called (ion) acoustic mode (also known as dust-acoustic (DA) wave) associated with nanoscale dust grain inertia is indeed resonantly excitable through the active role of weak but finite parent ion inertia. It is interestingly conjectured that the same excitation physics, as in the case of normal plasma sound mode, operates through the active inertial role of plasma thermal species. Details of the nonlinear acoustic mode analyses of current interest in transonic domains of such impure plasmas in hydrodynamic flow are presented.   相似文献   

15.
In the present work, the radiative condensation instability is investigated in the presence of dust charge fluctuations. We find that the charge variability of the grain reduces the growth rate of radiative mode only for fluctuation wavelength smaller or of the order of the Debye length and this reduction is not very large. Far from the Debye sphere, radiative mode can damp due to thermal conduction of electrons and ions  相似文献   

16.
The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves, AlfvÉn waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain rotation frequency. The present results should be useful in understanding the properties of low-frequency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and rotating charged dust grains.  相似文献   

17.
It is found that the collective effects operating at large distances from the grain surface can produce substantial scattering of the ion flux and create an additional collective drag force dominant for large grain densities. The consideration is restricted to large grain charges β = Zde 2a /TiλDi ? 1 and Ti /Te ? 1 (–eZd being the grain charge in units of electron charge, a being the grain size, λDi being the ion Debye radius and Te,i being electron and ion temperatures, respectively). For present dusty plasma experiments β ≈ 10–50, the large charges of grains are screened non‐linearly and the ion scattering creates non‐linear drag force. The present investigation considers effects of scattering by collective grain fields at large distances from the grains. It is found that the physical reason of the importance of collective drag force, calculated in this paper, is related to presence of weakly screened collective field of grains outside the non‐linear screening distance depending on grain densities. The amplitude of this collective fields of the grains is determined by non‐linear screening at non‐linear screening radius. It is shown that for dust densities of present experiments the collective drag force related to this scattering can be of the order of the non‐linear drag force caused by scattering inside the non‐linear screening radius or even larger. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
Grain Boundary Migration in Ceramics   总被引:2,自引:0,他引:2  
During ceramic fabrication, densification processes compete with coarsening processes to determine the path of microstructural evolution. Grain growth is a key coarsening process. This paper examines grain boundary migration in ceramics, and discusses the effects of solutes, pores, and liquid phases on grain boundary migration rates. An effort is made to highlight work in the past decade that has contributed to and advanced our understanding of solute drag effects, pore-boundary interactions, and the role of liquid phases in grain growth and microstructural evolution. Anisotropy of the grain boundary mobility, and its role in the development of anisotropic (anisometric) microstructures is discussed as it is a central issue in recent efforts to produce ceramic materials with new combinations of properties and functionality.  相似文献   

20.
Linear and nonlinear dust acoustic(DA)waves have been investigated in an opposite polarity dusty plasma comprising negatively and positively charged dust grains,Maxwellian electrons and ions,including the generalized polarization force effect.The properties of linear DA waves have been significantly altered by the dual dust polarity and polarization force.Large amplitude DA solitons have been discussed in the framework of the Sagdeev potential technique.Our results show that both rarefactive and compressive solitons can exist in such a dusty plasma.The basic features of the Sagdeev potential have been examined under the effect of the polarization force parameter R,the ratio of the charge number of the positive dust to that of the negative dust Z,and the Mach number M.The results show that these parameters play a significant role in determining the region of existence of large amplitude DA solitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号