首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.  相似文献   

2.
Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.  相似文献   

3.
Nonlinear waves on periodic backgrounds play an important role in physical systems. In this study, nonlinear waves that include solitons, breathers, rogue waves, and semi-rational solutions on periodic backgrounds for the coupled Lakshmanan-Porsezian-Daniel equations are investigated. Moreover, the interactions between different types of nonlinear waves are examined and their dynamic behaviors are studied. In particular, it is observed that bright-dark rogue waves interact with bright-dark breathers or solitons on periodic backgrounds, four-petaled breathers interact with two eye-shaped breathers on periodic backgrounds, and a four-petal rogue wave interplays with a rogue wave on periodic backgrounds. Furthermore, it is found that the value of the parameter γ3 affects the weak and strong interactions of these nonlinear waves. These results may be useful in the study of nonlinear wave dynamics in coupled nonlinear wave models.  相似文献   

4.
Fokas system is the simplest (2+1)-dimensional extension of the nonlinear Schr?dinger (NLS) equation (Eq.(2), Inverse Problems 10 (1994) L19-L22).By appropriately limiting on soliton solutions generated by the Hirota bilinear method, the explicit forms of $n$-th breathers and semi-rational solutions for the Fokas system are derived. The obtained first-order breather exhibits arange of interesting dynamics. For high-order breather, it has more rich dynamical behaviors.The first-order and the second-order breather solutions are given graphically. Using the long wave limit in soliton solutions, rational solutions are obtained, which are used to analyze the mechanism of the rogue wave and lump respectively.By taking a long waves limit of a part of exponential functions in $f$ and $g$ appeared in the bilinear form of the Fokas system, many interesting hybrid solutions are constructed. The hybrid solutions illustrate various superposed wave structures involving rogue waves, lumps, solitons, and periodic line waves. Their rather complicated dynamics are revealed.  相似文献   

5.
With the help of the similarity transformation connected the variable-coefficient (3+1)-dimensional nonlinear Schrödinger equation with the standard nonlinear Schrödinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the real time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value T0 to achieve the sustained and restrained spatiotemporal rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporal rogue waves can also be realized by setting different values of X0.  相似文献   

6.
Breathers and rogue waves as exact solutions of the three-dimensional Kadomtsev-Petviashvili equation are obtained via the bilinear transformation method.The breathers in three dimensions possess different dynamics in different planes,such as growing and decaying periodic line waves in the(x,y),(x,z) and(y,t) planes.Rogue waves are localized in time,and are obtained theoretically as a long wave limit of breathers with indeGnitely larger periods.It is shown that the rogue waves possess growing and decaying line profiles in the(x,y) or(x,z)plane,which arise from a constant background and then retreat back to the same background again.  相似文献   

7.
For the Benjamin Ono equation, the Hirota bilinear method and long wave limit method are applied to obtain the breathers and the rogue wave solutions. Bright and dark rogue waves exist in the Benjamin Ono equation, and their typical dynamics are analysed and illustrated. The semirational solutions possessing rogue waves and solitons are also obtained, and demonstrated by the three-dimensional figures. Furthermore, the hybrid of rogue wave and breather solutions are also found in the Benjamin Ono equation.  相似文献   

8.
We propose a scheme that excites rogue waves via electromagnetically induced transparency(EIT), which can also excite breathers and solitons. The system is a resonant Λ-type atomic ensemble. Under EIT conditions, the envelope equation of the probe field can be reduced to several different models, such as the saturable nonlinear Schr?dinger equation(SNLSE), and SNLSE with the trapping potential provided by a far-detuned laser field or a magnetic field. In this scheme, rogue waves can be generated by different initial pulses, such as the Gaussian wave with(or without) the uniform background. The scheme can be used to obtain rogue waves,breathers and solitons. We show the existence regions of rogue waves, breathers, and solitons as the function of the amplitude and width of the initial pulse. The novelty of our paper is that, we not only show rogue waves in the integrable system numerically, but also present the method to generate and control rogue waves in the non-integrable system.  相似文献   

9.
Under investigation in this paper are the inhomogeneous nonlinear Schrödinger Maxwell–Bloch (INLS-MB) equations which model the propagation of optical waves in an inhomogeneous nonlinear light guide doped with two-level resonant atoms. Higher-order nonautonomous breather as well as rogue wave solutions in terms of the determinants for the INLS-MB equations are presented via the nn-fold variable-coefficient modified Darboux transformation. The interactions among two nonautonomous breathers are graphically discussed, including the fundamental breather, bound breather, two-breather compression and two-breather evolution, etc. Moreover, several patterns of the higher-order rogue waves are also exhibited, such as the square rogue wave, two- and three-order periodic rogue waves, periodic fission and fusion, two-order stationary rogue waves, and recurrence of the two-order rogue waves. The character of the trajectory of the two-order periodic rogue wave is analyzed. Additionally, a novel type of interaction, namely, the collision between the breather and long-lived rogue waves, is found to be elastic. Our results could be useful for controlling the nonautonomous optical breathers and rogue waves in the inhomogeneous erbium doped fiber.  相似文献   

10.
The properties of rogue waves in the basin of intermediate depth are discussed in comparison with known properties of rogue waves in deep waters. Based on observations of rogue waves in the ocean of intermediate depth we demonstrate that the modulational instability can still play a significant role in their formation for basins of 20 m and larger depth. For basins of smaller depth, the influence of modulational instability is less probable. By using the rational solutions of the nonlinear Schrodinger equation (breathers), it is shown that the rogue wave packet becomes wider and contains more individual waves in intermediate rather than in deep waters, which is also confirmed by observations.  相似文献   

11.
We study the interaction between breather and N-order rogue waves in a nonlinear optical fiber.The impacts of the relative phase and the interaction distance between breathers and rogue waves are discussed in detail.Specifically,the breather can reduce the maximum hump value of high-order rogue waves greatly in the cases of nonzero relative phase or nonzero interaction distance.The characteristic of exclusion between breathers and rogue waves is described qualitatively in the situation of different interaction distances,which can be used to change the temporal-spatial distribution of rogue waves.Their interaction properties are characterized by the trajectory of localized waves' valleys and humps.It is shown that the interaction changes the dynamical evolution trajectory of rogue waves and breathers.These results provide some possible ways to control high-order rogue waves.  相似文献   

12.
徐涛  陈勇  林机 《中国物理 B》2017,26(12):120201-120201
We investigate some novel localized waves on the plane wave background in the coupled cubic–quintic nonlinear Schr o¨dinger(CCQNLS) equations through the generalized Darboux transformation(DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higherorder localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions;(ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons;(iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α.These results further uncover some striking dynamic structures in the CCQNLS system.  相似文献   

13.
Doubly-localised breather solutions of the nonlinear Schrödinger equation (NLS) are considered to be appropriate models to describe rogue waves in water waves as well as in other nonlinear dispersive media such as fibre optics. Within the hierarchy of this type of formations, the Peregrine breather (PB) is the lowest-order rational solution. Higher-order solutions of this kind may be understood as a nonlinear superposition of fundamental Peregrine solutions. These superpositions are nontrivial and admit only a fixed well prescribed number of elementary breathers in each higher-order solution. Here, we report first observation of second-order solution which in reality is a triplet of rogue waves.  相似文献   

14.
We have numerically calculated chaotic waves of the focusing nonlinear Schrr?odinger equation (NLSE), starting with a plane wave modulated by relatively weak random waves. We show that the peaks with highest amplitude of the resulting wave composition (rogue waves) can be described in terms of exact solutions of the NLSE in the form of the collision of Akhmediev breathers.  相似文献   

15.
By Taylor expansion of Darboux matrix, a new generalized Darboux transformations(DTs) for a(2 + 1)-dimensional nonlinear Schrdinger(NLS) equation is derived, which can be reduced to two(1 + 1)-dimensional equation:a modified KdV equation and an NLS equation. With the help of symbolic computation, some higher-order rational solutions and rogue wave(RW) solutions are constructed by its(1, N-1)-fold DTs according to determinants. From the dynamic behavior of these rogue waves discussed under some selected parameters, we find that the RWs and solitons are demonstrated some interesting structures including the triangle, pentagon, heptagon profiles, etc. Furthermore, we find that the wave structure can be changed from the higher-order RWs into higher-order rational solitons by modulating the main free parameter. These results may give an explanation and prediction for the corresponding dynamical phenomena in some physically relevant systems.  相似文献   

16.
In this paper, based on the Hirota bilinear method and symbolic computation approach, multiple-order rogue waves of (2+1)-dimensional Boussinesq type equation are constructed. The reduced bilinear form of the equation is deduced by the transformation of variables. Three kinds of rogue wave solutions are derived by means of bilinear equation. The maximum and minimum values of the first-order rogue wave solution are given at a specific moment. Furthermore, the second-order and third-order rogue waves are explicitly derived. The dynamic characteristics of three kinds of rogue wave solutions are shown by three-dimensional plot.  相似文献   

17.
In this paper,the rogue waves of the higher-order dispersive nonlinear Schrödinger (HDNLS) equation are investigated,which describes the propagation of ultrashort optical pulse in optical fibers.The rogue wave solutions of HDNLS equation are constructed by using the modified Darboux transformation method.The explicit first and second-order rogue wave solutions are presented under the plane wave seeding solution background.The nonlinear dynamics and properties of rogue waves are discussed by analyzing the obtained rational solutions.The influence of little perturbation ε on the rogue waves is discussed with the help of graphical simulation.  相似文献   

18.
19.
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.  相似文献   

20.
《Physics letters. A》2014,378(30-31):2137-2141
We present an explicit analytical form of first and second order rogue waves for distributive nonlinear Schrödinger equation (NLSE) by mapping it to standard NLSE through similarity transformation. Upon obtaining the rogue wave solutions, we study the propagation of rogue waves through a periodically distributed system for the two cases when Wronskian of dispersion and nonlinearity is (i) zero, (ii) not equal to zero. For the former case, we discuss a mechanism to control their propagation and for the latter case we depict the interesting features of rogue waves as they propagate through dispersion increasing and decreasing fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号