首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.  相似文献   

2.
张凯  黄飞  曹镛 《高分子学报》2017,(9):1400-1414
相对于传统的无机半导体器件,以有机半导体(特别是聚合物半导体)材料为基础的有机光电器件,可采用与传统印刷技术(例如喷墨打印、卷对卷印刷等)相结合的溶液加工方式制备低成本、大面积、柔性光电器件,因而成为广泛关注的焦点,并得到了快速发展.实现溶液加工的高效有机光电器件的一个关键问题是界面问题——如何避免溶液加工时有机层间的互溶以及如何实现可印刷稳定金属电极的高效电子注入等.水/醇溶性共轭聚合物的迅速发展为解决溶液加工多层有机光电器件所面临的界面问题提供了有效手段.研究发现,水/醇溶共轭聚合物不但可以有效避免溶液加工多层器件中的界面互溶,而且还可与高功函数的稳定金属发生界面偶极相互作用而增强其电子注入,从而解决了高功函数稳定金属电子注入的难题,为实现全溶液加工的高效印刷有机光电器件提供了可行的方案.本文介绍了近年来本课题组在水/醇溶共轭聚合物阴极界面材料及器件应用方面的研究进展,并对水/醇溶共轭聚合物阴极界面材料在聚合物发光二极管和聚合物太阳电池中的工作机理进行了探讨.  相似文献   

3.
Electroluminochromism (ELC) refers to an interesting phenomenon exhibited by a material whose luminescent properties can be reversibly modulated under an electrical stimulus. Such a luminescence‐switching property has been widely used in various organic optoelectronic devices because it can simultaneously detect electrical and optical signals. Metal complexes are the promising candidates for ELC materials due to their sensitivity to an electrical stimulus. Herein, recent progress on electroluminochromic materials and devices based on various metal complexes has been summarized. Meanwhile, the applications of these complexes in data recording and security protection have also been discussed. Finally, a brief conclusion and outlook are presented, pointing out that the development of electroluminochromic metal complexes with excellent performance is important because they play a vital role in future intelligent optoelectronic devices.  相似文献   

4.
The development of new organic semiconductors with improved electrical performance and enhanced environmental stability is the focus of considerable research activity. This paper presents the design, synthesis, optical and electrochemical characterization, crystal packing, modeling and thin film morphology, and organic thin film field effect transistor (OTFT) device data analysis for a novel 2,6-bis[2-(4-pentylphenyl)vinyl]anthracene (DPPVAnt) organic semiconductor. We observed a hole mobility of up to 1.28 cm2/V.s and on/off current ratios greater than 107 for OTFTs fabricated using DPPVAnt as an active semiconductor layer. The mobility value is comparable to that of the current best p-type semiconductor pentacene-based device performance. In addition, we found a very interesting relationship between the charge mobility and molecule crystal packing in addition to the thin film orientation and morphology of the semiconductor as determined from single-crystal molecule packing study, thin film X-ray diffraction, and AFM measurements. The high performance of the semiconductor ranks among the best performing p-type organic semiconductors reported so far and will be a very good candidate for applications in organic electronic devices.  相似文献   

5.
Critical to the development of organic electronics is the design and synthesis of new organic semiconductors with improved electrical performance and enhanced environmental stability. We present in this communication the synthesis of a series of simple oligothiophene derivatives that bear the styryl unit as terminal substituent. Thin film field-effect transistors incorporating these compounds show high electrical performance, such as mobilities as high as 0.1 cm2/Vs, along with exceptional stability under ambient conditions. Especially, the longer oligomer, DS-4T, containing the quaterthiophene core gives rise to devices that show no decrease in performance after more than 17 months of storage and under continuous operation. Such stability features are unprecedented in the oligothiophene series.  相似文献   

6.
Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.  相似文献   

7.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

8.
One important feature of organic semiconductors is their solution processability, which allows researchers to tune their aggregation states in solution and solid states and to control the processing conditions to reach desirable electronic and optoelectronic properties. Temperature is one of the most important processing parameters of organic semiconductors and has been studied extensively particularly for those conjugated small- and macro- molecules with strong temperature-dependent aggregation properties. This minireview summarizes the temperature-induced aggregation behaviors of organic semiconductors in solution, during solution casting and upon thermal annealing post-treatment of solid-state thin films. The influences of different aggregation states on the optoelectronic properties, in particular the photovoltaic properties, are discussed. The conclusions in this work will provide a rational guide to precisely control the aggregation states of organic semiconductors to fabricate high-performance optoelectronic devices.  相似文献   

9.
For the fabrication of next-generation flexible metal oxide devices, solution-based methods are considered as a promising approach because of their potential advantages, such as high-throughput, large-area scalability, low-cost processing, and easy control over the chemical composition. However, to obtain certain levels of electrical performance, a high process temperature is essential, which can significantly limit its application in flexible electronics. Therefore, this article discusses recent research conducted on developing low-temperature, solution-processed, flexible, metal oxide semiconductor devices, from a single thin-film transistor device to fully integrated circuits and systems. The main challenges of solution-processed metal oxide semiconductors are introduced. Recent advances in materials, processes, and semiconductor structures are then presented, followed by recent advances in electronic circuits and systems based on these semiconductors, including emerging flexible energy-harvesting devices for self-powered systems that integrate displays, sensors, data-storage units, and information processing functions.  相似文献   

10.
This study focused on the structural, optical and electrical features of chitosan organic layer obtained by spin coating technique both on glass and n-Si substrates. XRD results indicated that chitosan has polycrystalline orthorhombic nature. While optical transmittance spectrum of the chitosan organic layer exhibited an increasing tendency in the visible range, band gap energy value was calculated as 4.23 eV for chitosan by UV–Vis spectrometer. Electrical performance of organic chitosan layer in a Schottky device was studied by fabricating of Au/n-Si and Au/chitosan/n-Si devices. The suitability of Au/chitosan/n-Si sandwich devices in optoelectronic applications were tested under dark and illumination conditions. The Au/chitosan/n-Si sandwich device exhibits good photodiode characteristics. Furthermore, the effect of X-ray radiation doses on the electrical properties of the Au/chitosan/n-Si sandwich device was also investigated. In order to get information about electrical characteristics as a function of X-ray radiation doses, Au/chitosan/n-Si sandwich device was exposed to X-ray radiation in same exposure time and various doses. The results highlighted that the performance of the device with chitosan organic interface layer deteriorated with increasing radiation dose. In addition, the transportation mechanism of chitosan based Schottky device was discussed in details.  相似文献   

11.
The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46–67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.  相似文献   

12.
Two conjugated polymers, IIDDT and IIDT, based on an isoindigo core were developed for organic field-effect transisitors. Investigation of their field-effect performance indicated that IIDDT exhibited air-stable mobility up to 0.79 cm(2) V(-1) s(-1), which is quite high among polymer FET materials. The facile preparation and high mobility of such polymers make isoindigo-based polymers very promising for application as solution-processable organic semiconductors for optoelectronic devices.  相似文献   

13.
This communication demonstrates a method of transferring unreacted low molecular weight (LMW) siloxane oligomers from freshly prepared "dry" PDMS stamps for patterning organic semiconductors and conducting polymers into functional devices via selective wetting. The semiconductors were patterned onto the modified surfaces via dip-coating with well-resolved feature sizes as small as 1 mum. Functional transistor arrays exhibited field-effect mobilities as high as 0.07 cm2/Vs. The proposed printing method eliminates the need to ink SAMs for fabricating patterns and results in a simple, fast, and highly reproducible method of patterning organic semiconductors from solution. The method herein also produced a flexible transistor composed of patterned PEDOT source-drain electrodes.  相似文献   

14.
采用微机械剥离法得到横向尺寸为10 μm的碲化锗(GeTe)纳米片. 通过电子束曝光和真空溅射镀膜的方法, 以钛金合金为接触电极, 制备基于二维碲化锗(2D-GeTe)纳米材料的场效应晶体管(FET), 并测定了其电学性能. 结果表明, 剥离所得GeTe纳米材料具有良好的结晶性, 光学带隙为1.98 eV, 属于p型半导体; 该场效应晶体管展现出了6.4 cm2·V?1·s?1的载流子迁移率和670的开关电流比的良好电学性能.  相似文献   

15.
The charge transport characteristics of organic semiconductors are one of the key attributes that impacts the performance of organic electronic and optoelectronic devices in which they are utilized. For improved performance in organic photovoltaic cells, light-emitting diodes, and field-effect transistors (FETs), efficient transport of the charge carriers within the organic semiconductor is especially critical. Characterization of charge transport in these organic semiconductors is important both from scientific and technological perspectives. In this review, we shall mainly discuss the techniques for measuring the charge carrier mobility and not the theoretical underpinnings of the mechanism of charge transport. Mobility measurements in organic semiconductors and particularly in conjugated polymers, using space-charge-limited current, time of flight, carrier extraction by linearly increasing voltage, double injection, FETs, and impedance spectroscopy are discussed. The relative merits, as well as limitations for each of these techniques are reviewed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
有机/高分子共轭聚合物的结构设计是制备高性能有机半导体的有效策略,但该过程存在着设计合成周期长、制备步骤复杂和产率偏低等问题。为了克服这些问题,近年来人们越来越关注对有机/高分子半导体的掺杂。然而,传统电荷转移掺杂剂(如卤族单质I2、金属氧化物Fe3O4、小分子F4TCNQ等)存在掺杂效率低、溶解度差和掺杂条件苛刻等问题。相比之下,三(五氟苯基)硼烷具有溶解度高、掺杂效率高、广泛适应性等优点。本文结合相关文献综述了三(五氟苯基)硼烷掺杂有机半导体的物理机制,并探讨了掺杂有机半导体的性质;此外,还总结了三(五氟苯基)硼烷掺杂在不同光电功能器件中的应用并明确了今后的研究方向。  相似文献   

17.
聚芴类半导体光谱稳定性   总被引:2,自引:0,他引:2  
有机半导体的物理和化学性质直接影响其光电器件的性能, 这为物理化学提出了新的研究内容与挑战. 其中, 聚芴类蓝光二极管的光谱稳定性及低能发射带(LEEB)的起源问题是国际上近十年的热点问题之一. 本文系统概述了低能发射带的现象、表征方法以及可能的形成机理, 包括链间作用导致的激基缔合物发射、器件制备或降解过程形成的芴酮缺陷发射、芴酮聚集态发射以及聚芴端羟基界面氧化导致的绿光发射. 本文综述各种物理掺杂和界面调控改善聚芴类二极管蓝光稳定性的策略, 着重论述非平面基团的空间位阻、分子构象与链的拓扑结构以及引入抗氧化受阻胺光稳定剂来提高其光谱稳定性策略.  相似文献   

18.
Direct (hetero)arylation, as a sustainable, atom-economic and environmentally benign synthetic protocol compared to conventional coupling techniques, has been extensively applied to the sustainable preparation of π-conjugated materials for organic optoelectronic devices. In this review, we will highlight recent advances made in direct arylation for conjugated small molecules and polymers toward high performance organic optoelectronic devices. Some important insights in direct arylation for synthesizing organic optoelectronic materials are given, together with the challenges and outlook in this significant and hot research field.  相似文献   

19.
Imide-functionalized π-conjugated polymer semiconductors have received a great deal of interest owing to their unique physicochemical properties and optoelectronic characteristics, including excellent solubility, highly planar backbones, widely tunable band gaps and energy levels of frontier molecular orbitals, and good film morphology. The organic electronics community has witnessed rapid expansion of the materials library and remarkable improvement in device performance recently. This review summarizes the development of imide-functionalized polymer semiconductors as well as their device performance in organic thin-film transistors and polymer solar cells, mainly achieved in the past three years. The materials mainly cover naphthalene diimide, perylene diimide, and bithiophene imide, and other imide-based polymer semiconductors are also discussed. The perspective offers our insights for developing new imide-functionalized building blocks and polymer semiconductors with optimized optoelectronic properties. We hope that this review will generate more research interest in the community to realize further improved device performance by developing new imide-functionalized polymer semiconductors.  相似文献   

20.
The typical two‐dimensional (2D) semiconductors MoS2, MoSe2, WS2, WSe2 and black phosphorus have garnered tremendous interest for their unique electronic, optical, and chemical properties. However, all 2D semiconductors reported thus far feature band gaps that are smaller than 2.0 eV, which has greatly restricted their applications, especially in optoelectronic devices with photoresponse in the blue and UV range. Novel 2D mono‐elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first‐principles calculations. Interestingly, although As and Sb are typically semimetals in the bulk, they are transformed into indirect semiconductors with band gaps of 2.49 and 2.28 eV when thinned to one atomic layer. Significantly, under small biaxial strain, these materials were transformed from indirect into direct band‐gap semiconductors. Such dramatic changes in the electronic structure could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号