首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to describe two-place events. Based on the Lax pair which contains the two-order partial derivative, the Lie symmetry group method is successfully applied to find the exact invariant solution for the AB-m Kd V equation with nonlocal symmetry by introducing one suitable auxiliary variable. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to some specific functions are derived. Figures show the physical phenomenon, that is, "the shifted parity and delayed time reversal to describe two-place events".  相似文献   

2.
To describe two correlated events, the Alice–Bob (AB) systems were constructed by Lou through the symmetry of the shifted parity, time reversal and charge conjugation. In this paper, the coupled AB system of the Kadomtsev–Petviashvili equation, which is a useful model in natural science, is established. By introducing an extended Bäcklund transformation and its bilinear formation, the symmetry breaking soliton, lump and breather solutions of this system are derived with the aid of some ansatze functions. Figures show these fascinating symmetry breaking structures of the explicit solutions.  相似文献   

3.
From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically.To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.  相似文献   

4.
Starting from the truncated Painlev′e expansion, the residual symmetry of the Alice-Bob modified Kortewegde Vries(AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transformed into an enlarged system by introducing one new variable. Based on Lie's first theorem, the finite transformation is obtained from the localized residual symmetry. Further, considering the linear superposition of multiple residual symmetries gives rises to N-th B?cklund transformation in the form of the determinant. Moreover, the P_sT_d(the shifted parity and delayed time reversal) symmetric exact solutions(including invariant solution, breaking solution and breaking interaction solution) of AB-mKdV equation are presented and two classes of interaction solutions are depicted by using the particular functions with numerical simulation.  相似文献   

5.
S Y Lou 《理论物理通讯》2020,72(5):57001-132
Multi-place nonlocal systems have attracted attention from many scientists. In this paper, we mainly review the recent progresses on two-place nonlocal systems (Alice-Bob systems) and four-place nonlocal models. Multi-place systems can firstly be derived from many physical problems by using a multiple scaling method with a discrete symmetry group including parity, time reversal, charge conjugates, rotations, field reversal and exchange transformations. Multi-place nonlocal systems can also be derived from the symmetry reductions of coupled nonlinear systems via discrete symmetry reductions. On the other hand, to solve multi-place nonlocal systems, one can use the symmetry-antisymmetry separation approach related to a suitable discrete symmetry group, such that the separated systems are coupled local ones. By using the separation method, all the known powerful methods used in local systems can be applied to nonlocal cases. In this review article, we take two-place and four-place nonlocal nonlinear Schrödinger (NLS) systems and Kadomtsev-Petviashvili (KP) equations as simple examples to explain how to derive and solve them. Some types of novel physical and mathematical points related to the nonlocal systems are especially emphasized.  相似文献   

6.
An Alice-Bob Kadomtsev-Petviashivili (ABKP) equation with shifted-parity ($\hat{P}_s^x$ parity with a shift for the space variable $x$) and delayed time reversal ($\hat{T}_d$, time reversal with a delay) symmetries is investigated. The multi-soliton solutions with three arbitrary even or odd functions are found from the $\hat{P}_s^x\hat{T}_d$ symmetry reductions of a coupled local KP system. The result shows that for the ABKP equation with $\hat{P}_s^x\hat{T}_d$ nonlocality, the odd numbers of solitons are prohibited. The solitons of the ABKP must be paired. For the ABKPII equation, there exists a critical value of wave numbers for the existence of paired solitons. For the ABKPI equation, there are two types of "breather" excitations. A lump solution of the ABKPI may possess four, five or six leaves.  相似文献   

7.
The Chinese ancient sage Laozi said that everything comes from 'nothing'. In the work [Chin. Phys. Lett.30(2013) 080202], infinitely many discrete integrable systems have been obtained from nothing via simple principles(Dao). In this study, a new idea, the consistent correlated bang, is introduced to obtain nonlinear dynamic systems including some integrable ones such as the continuous nonlinear Schrodinger equation, the(potential)Korteweg de Vries equation, the(potential) Kadomtsev-Petviashvili equation and the sine-Gordon equation.These nonlinear systems are derived from nothing via suitable 'Dao',the shifted parity, the charge conjugate, the delayed time reversal, the shifted exchange, the shifted-parity-rotation and so on.  相似文献   

8.
We investigate the resonant regime of a mesoscopic cavity made of graphene or a doped beam splitter. Using Non-Hermitian Quantum Mechanics, we consider the Bender-Boettcher assumption that a system must obey parity and time reversal symmetry. Therefore, we describe such system by coupling chirality, parity, and time reversal symmetries through the scattering matrix formalism and apply it in the shot noise functions, also derived here. Finally, we show how to achieve the resonant regime only by setting properly the parameters concerning the chirality and the PT symmetry.  相似文献   

9.
L.D. Barron 《Molecular physics》2013,111(6):1395-1406
The rôle of time reversal symmetry in natural and magnetic optical activity is discussed. Natural optical rotation is shown to be generated by an anti-hermitian odd parity time-even operator and magnetic optical rotation by an anti-hermitian even parity time-odd operator. This shows that lack of time reversal invariance is not the source of natural optical rotation and that free atoms can show natural optical rotation without violating reversality, which leads to a fundamental distinction between the conditions necessary for natural optical rotation and a permanent space-fixed electric dipole moment. General transition optical activity and polarizability tensors between components of degenerate states are discussed with reference to possible new Raman experiments and new contributions to discriminating intermolecular forces between chiral molecules. Time reversal symmetry also leads to a new criterion for chiral objects and to the concept that natural optical activity provides an example of spontaneous symmetry breaking with respect to CP.  相似文献   

10.
The study on the nonlocal systems is one of the hot topics in nonlinear science. In this paper, the well-known fifth-order integrable systems including the Sawada-Kotera (SK) equation, the Kaup-Kupershmidt (KK) equation and the fifth-order Koterweg-de Vrise (FOKdV) equation are extended to a generalized two-place nonlocal form, the generalised fifth-order Alice-Bob system. The Lax integrability of two sets of Alice-Bob systems for all the SK, KK and FOKdV type systems are explicitly given via matrix Lax pairs. The $\hat{P}\hat{T}$ symmetry breaking and symmetry invariant periodic and solitary waves for one set of nonlocal SK, KK and FOKdV system are investigated via a special travelling wave solution ansatz.  相似文献   

11.
In this paper, a generalized time fractional modified KdV equation is investigated, which is used for representing physical models in various physical phenomena. By Lie group analysis method, the invariance properties and the vector fields of the equation are presented. Then the symmetry reductions are provided. Moreover, we construct the explicit solutions of the equation by using sub-equation method. Based on the power series theory, the approximate analytical solution for the equation are also constructed. Finally, the new conservation theorem is applied to constructed conservation laws for the equation.  相似文献   

12.
Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respectively. Moreover, based on the power series theory, a kind of explicit power series solutions for the equation are well constructed with a detailed derivation. Finally, by using the new conservation theorem, two kinds of conservation laws of the equation are well constructed with a detailed derivation.  相似文献   

13.
Robertson has found a projection operator which, applied to the Liouville equation, yields an exact equation for , the information-theoretic phase-space distribution. If the Robertson equation is multiplied by a set [0pt]{} of functions representing physical fluxes, odd under momentum reversal and even under configuration inversion, a set of evolution equations is obtained for time-dependent ensemble averages which are variables of extended thermodynamics. In earlier work, a perturbation calculation was developed, assuming just one variable , for an operator [0pt] occurring in the Robertson equation. This calculation is extended here to the case where there are variables. The coefficients in the evolution equations depend on {} and explicitly on time t at short times. It is shown here that these coefficients exhibit Onsager symmetry at long times, after the transient explicit t-dependence has disappeared, to . Received 13 September 1999 and Received in final form 4 April 2000  相似文献   

14.
Points of agreement and disagreement with Post's remarks on the author's discussion of the criteria to be used for reducing the eight parity and time reversal symmetry choices that the formally possible for electromagnetic quantities are noted.  相似文献   

15.
It is found that, with a model current profile, the Grad-Shafranov equation can be reduced to the Helmholtz equation, which can describe a variety of equilibrium configurations. With the eigenvalue problem solved in the toroidal coordinate system, an analytical solution to the Grad-Shafranov equation is found. It is demonstrated that current reversal equilibrium configurations exist with finite radial gradient of plasma pressure and continuous current density, and that current density reversal is accompanied by pressure gradient reversal.  相似文献   

16.
By means of the generalized direct method, a relationship is constructed between the new solutions and the old ones of the (3+1)-dimensional breaking soliton equation. Based on the relationship, a new solution is obtained by using a given solution of the equation. The symmetry is also obtained for the (3+1)-dimensional breaking soliton equation. By using the equivalent vector of the symmetry, we construct a seven-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, the (3+1)-dimensional breaking soliton equation is reduced and some solutions to the reduced equations are obtained. Furthermore, some new explicit solutions are found for the (3+1)-dimensional breaking soliton equation.  相似文献   

17.
The induced Chern-Simons term for a paired electron state is calculated in the quantum Hall system by using a field theory on the von Neumann lattice. The coefficient of the Chern-Simons term, which is the Hall conductance, has not only the usual term proportional to a filling factor due to P (parity) & T (time reversal) symmetry breaking but also correction terms due to P & T & U(1) symmetry breaking. The correction term essentially comes from the Nambu-Goldstone mode and depends on an infrared limit. It is shown that the correction term is related to a topological number of a gap function in the momentum space.  相似文献   

18.
We discuss various possibilities to improve the sensitivity of parity and time reversal asymmetry measurements in gamma decaying nuclei. We compare the best known parity violating case180mHf to a similar isotope178mHf. Although the parity violation may not be as large, the 178 isomer is better suited to eliminate experimental systematic problems. We introduce a new detector to enhance the sensitivity of such measurements. Our first experiments indicate applicability of these detectors to P symmetry tests.  相似文献   

19.
A. Muriel 《Physics letters. A》2013,377(16-17):1161-1165
From a time evolution equation for the single particle distribution function derived from the N-particle distribution function (A. Muriel, M. Dresden, Physica D 101 (1997) 297), an exact solution for the 3D Navier–Stokes equation – an old problem – has been found (A. Muriel, Results Phys. 1 (2011) 2). In this Letter, a second exact conclusion from the above-mentioned work is presented. We analyze the time symmetry properties of a formal, exact solution for the single-particle distribution function contracted from the many-body Liouville equation. This analysis must be done because group theoretic results on time reversal symmetry of the full Liouville equation (E.C.G. Sudarshan, N. Mukunda, Classical Mechanics: A Modern Perspective, Wiley, 1974). no longer applies automatically to the single particle distribution function contracted from the formal solution of the N-body Liouville equation. We find the following result: if the initial momentum distribution is even in the momentum, the single particle distribution is reversible. If there is any asymmetry in the initial momentum distribution, no matter how small, the system is irreversible.  相似文献   

20.
An exact solution to the classical Liouville equation is derived. It is found that it can have a partial solution with a broken symmetry with respect to time. Thus, in the general case, it does not follow from the invariance of the fundamental Liouville law concerning time reversal that the past and future play similar roles. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 85–89, August, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号