共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
以聚丙烯微孔膜为基材,通过扩散控制原位共聚合的方法在人填充了组成沿膜的厚度方向逐渐改变的无规共聚物,X-光电子能谱(XPS)、全反射红外光谱(ATR)以及动态粘弹谱的分析结果。说明所制备得到的合膜具有明显的渐变聚合物性质。 相似文献
3.
4.
以鹅去氧胆酸(CDCA)为印迹分子, 甲基丙烯酸为功能单体, 丙烯酸乙二醇二甲基酯和三羟甲基丙烷三甲基丙烯酸酯为交联剂, 在氯仿中采用沉淀聚合法制得平均粒径为200~300 nm的分子印迹聚合物微球(MIPMS). 用红外光谱研究了印迹分子与功能单体之间的作用类型, 用透射电镜对聚合物的形貌进行了表征. 结果表明, 聚合物微球在合成过程中形成了两类结合位点, 该分子印迹聚合物对CDCA具有良好的特异吸附性能, 可用于胆汁酸的分离、纯化, 交联剂的种类可以影响分子印迹聚合物的形貌和吸附性能. 相似文献
5.
6.
7.
超顺磁性高分子微球的制备与表征 总被引:18,自引:2,他引:18
用化学共沉淀方法制备了Fe3O4纳米微粒,并用油酸(十八烯酸)和十二烷基苯磺酸钠为双层表面活性剂进行表面修饰,制备了稳定的水分散性纳米Fe3O4可聚合磁流体.在Fe3O4磁流体存在下,将苯乙烯与甲基丙烯酸通过乳液聚合方法制备了磁性高分子微球.透射电镜研究表明,Fe3O4微粒的平均粒径在10nm左右,乳液聚合形成的磁性高分子微球的粒径平均约为130nm;用超导量子干涉仪对微粒及高分子微球进行了磁性表征,结果表明,合成的Fe3O4纳米微粒以及磁性高分子微球均具有超顺磁性.同时,还用红外光谱及X射线衍射表征了磁性高分子微球的化学成分和晶体结构.用热失重方法测得磁性高分子微球中磁性物质的含量为23.6%. 相似文献
8.
模板法是一种制备粒径可控、形貌均一微球的有效途径。以球霰石形态存在的CaCO3多孔微球具有生物相容、孔径均一,以及可在温和条件下分解等优点,适用于作为模板制备微球。本文在对CaCO3模板进行简单介绍的基础上,从原料选取与应用角度综述了用CaCO3模板法制备微球的研究进展。常用的装载CaCO3多孔微球的方法有物理吸附、共沉淀和渗透法等,所用原料有天然高分子(如多糖、蛋白质、DNA)和合成高分子(如聚苯乙烯磺酸钠、聚乙烯醇)。利用CaCO3模版制备的微球具有多孔洞或空心结构,尺寸形貌均一可控,特别适用于制药、药物递送、生物传感器及化学分析等领域。预计随着纳米技术的发展和生物医药领域的需求将推动CaCO3模板法的研究,以期通过该方法制备出应用领域更加广泛的微球。 相似文献
9.
大粒径磁性高分子微球的制备 总被引:14,自引:0,他引:14
大粒径磁性高分子微球的制备邱广明邱广亮*(内蒙古工业大学电力学院动力系呼和浩特)(内蒙古师范大学生物系呼和浩特010022)关键词高分子磁性微球,苯乙烯,丙烯酸,共聚物,制备1996-11-25收稿,1997-06-11修回内蒙古自然科学基金资助项目... 相似文献
10.
磁性高分子微球固定化中性蛋白酶的研究 总被引:5,自引:0,他引:5
以表面带羟基的磁性高分子微球为载体,对位苯醌活化后,通过共价结合修饰中性蛋白酶,得到比活性为1000U/g的磁性固定化酶。偶联蛋白量20~30mg/g载体,固定化酶活性保持达40%,自由酶和固定化酶相比,最适温度从50℃变到50~60℃,最适pH从7.5变到6.5,Km从0.054%变到0.088%酪蛋白溶液,pH稳定性、热稳定性、贮存稳定性都有较大提高. 相似文献
11.
多尺度共轭微孔聚合物的可控合成 总被引:1,自引:0,他引:1
自2007年首次报道以来, 作为一种由共轭单元构建的三维聚合物网络骨架, 共轭微孔聚合物(Conjugated Microporous Polymer, CMP)通常都是以不溶不熔的固体粉末形式存在; 尽管这种材料结合了优异的多孔性、稳定的骨架结构以及多样化的功能, 显示了在众多领域的应用价值和广阔前景, 但又始终面临着自身性质带来的难以解决的加工性问题. 为了让这种材料充分发挥自身优点, 应用于除吸附分离等以外的光电、传感、催化等能源环境相关的领域, 需要在多尺度范围内调控CMP生长和形成, 获得微纳尺度的CMP微球以及宏观尺度的CMP薄膜、涂层或是凝胶, 从而提高其溶液性质以便于进一步加工处理, 或是直接获得可用于构筑器件的薄膜. 从目前的研究进展来看, 一共有四种研究策略来解决这一问题, 分别是设计合成: (1)可溶性CMP聚合物, (2)溶液可分散CMP纳米微球, (3) CMP(复合)薄膜, (4)有机相CMP化学凝胶. 这些工作采用了新的聚合方法、催化剂或功能单体, 使CMP材料初步实现了溶液中的加工、组装、复合以及器件的构筑, 展示了在光学传感、光电转换、能量存储、非均相催化等优异的性质. 尽管目前已报道的工作仍旧面临较多的局限性, 然而基于创新的思路和大量的探索, 这类新型的功能高分子材料将会逐步成为一个重要的多孔材料分支, 具有光明的发展前景. 相似文献
12.
含羟基磁性高分子微球的合成及表征 总被引:14,自引:0,他引:14
采用分散聚合法,以Fe3O4粉末为磁核,苯乙烯-甲基丙烯酸羟乙酯共聚物为高分子壳层、合成了带羟基的磁性复合高分子微球。Fe3O4与苯乙烯等油溶性单体亲合性差,有聚乙二醇溶液处理磁粉增强其表面亲水、亲油性。控制合成条件,成可以得到粒径为50-500μmFe3O4含量为0.5-2.5%的磁性微球。 相似文献
13.
14.
沉淀聚合制备聚(季戊四醇三丙烯酸酯-苯乙烯)单分散微球及其形成机理 总被引:1,自引:0,他引:1
以季戊四醇三丙烯酸酯(PETA)作交联剂,苯乙烯作共聚单体,偶氮二异丁腈作引发剂,在乙醇或其与水的混合溶剂中沉淀聚合制备了交联聚合物微球.研究了反应时间、交联剂用量以及溶剂中水含量对聚合过程及微球的影响.结果表明当PETA用量在单体质量的5%-35%之间且反应时间不低于6h时可制得单分散聚合物微球.当PETA用量低于20%时,所得微球的粒径随PETA用量的增加逐渐减小,粒径分布逐渐变窄;此后继续提高PETA用量,微球粒径又逐渐增大,粒径分布逐渐变宽.向反应介质中加入水,可明显提高微球产率及单体转化率,但其体积分数达30%时,所得微球分散性变宽.在此基础上对微球的形成机理也进行了讨论. 相似文献
15.
以三嵌段共聚物HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H (P123)为模板剂, 次亚磷酸钠为还原剂, 水热制备了微米级镍微球. 采用X射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)对产物进行表征. 结果表明, 镍微球由纳米级的镍微晶组成, 其中至少部分微球存在空心结构. 微球的尺寸随着前驱体溶液pH值的增加而减小, 其聚集成链的程度随着水热温度的上升而增强. 120和220 ℃水热合成微球的直径范围、平均微晶尺寸和矫顽力分别是1.5~4.5和0.8~4.5 μm, 16.0和14.2 nm, 以及91.5和66.1 Oe. 相似文献
16.
以存在广泛的生物质原料马铃薯淀粉为前驱体, 通过磷酸对淀粉分解的促进作用和KOH活化法制备微孔炭微球材料. 采用77 K条件下的N2吸附、扫描电子显微镜(SEM)分别对所得样品的孔隙结构、形貌特征进行表征. 采用傅里叶变换红外(FT-IR)光谱对磷酸促进淀粉分解的机理进行研究. 在6 mol·L-1 KOH 电解质溶液中的电化学测试表明了所得微孔炭微球材料的优异电容特性. 在50 mA·g-1的电流密度下, 电容量为363.6 F·g-1. 此外, 该材料表现出了优异的倍率性能, 在扫描速率为300 mV·s-1的条件下, 所得循环伏安(CV)曲线仍能保持良好的矩形形状. 电化学测试结果表明, 马铃薯淀粉基微孔炭微球材料在高性能电化学电容器的电极材料领域具有广阔的应用前景. 相似文献
17.
含羧基磁性高分子微球的合成与表征 总被引:13,自引:0,他引:13
在共沉淀法合成超细磁粉的基础上,以苯乙烯(St)和丙烯酸为共聚单体,以过氧化苯甲酰(BPO)为引发剂,用分散聚合法得到了含羧基的具有核壳结构的磁性高分子微球。采用XRD、TEM、SEM、IR等对样品进行了表征。表征结果表明:制备的磁粉为Fe3O4单相,磁粉的粒径为10 nm左右,微球粒径大约在1~5 μm,呈球形,微球中存在羧基。VSM磁性能测试结果表明:用PEG4000作为表面活性剂时,样品的磁性能最强。分散剂和分散介质对微球形貌和粒度均有影响。 相似文献
19.
采用无皂乳液聚合法制得聚苯乙烯-甲基丙烯酸缩水甘油酯(PSG)乳液微球,然后在微球表面嫁接空间臂分子1,6-己二胺,得到表面含氨基的PSGN微球,接着借助EDC/NHS催化作用将药物分子卡托普利化学偶联到PSGN微球表面,制成固定卡托普利的亲和PSG微球。实验着重考察了PSGN微球偶联固定卡托普利反应过程中催化剂比例和用量、pH值、反应温度和时间等的影响规律。结果表明,在25℃,pH为4.0,m(NHS)∶m(EDC)=1∶2,EDC的浓度为4mg/mL的条件下,卡托普利偶联到微球表面的效果较好。 相似文献