首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic Fe3O4@SiO2 nanoparticles with superparamagnetic properties were prepared via a reverse mi-croemulsion method at room temperature. The as-prepared samples were characterized by transmission electron mi-croscopy(TEM), X-ray diffractometry(XRD), and vibrating sample magnetometry(VSM). The Fe3O4@SiO2 nanoparticles were modified by (3-aminopropyl)triethoxysilane(APTES) and subsequently activated by glutaraldehyde(Glu). Protein A was successfully immobilized covalently onto the Glu activated Fe3O4@SiO2 nanoparticles. The adsorption capacity of the nanoparticles was determined on an ultraviolet spectrophotometer(UV) and approximately up to 203 mg/g of protein A could be uniformly immobilized onto the modified Fe3O4@SiO2 magnetic beads. The core-shell of the Fe3O4@SiO2 magnetic beads decorated with protein A showed a good binding capacity for the chime-ric anti-EGFR monoclonal antibody(anti-EGFR mAb). The purity of the anti-EGFR mAb was analyzed by virtue of HPLC. The protein A immobilized affinity beads provided a purity of about 95.4%.  相似文献   

2.
A method is described for the gas chromatographic-electron-capture detection determination of alkenes via on-column bromination reactions. Pyridinium bromide perbromide (PBPB) was used as the Br2 source, and a cholesterol-glass beads mixture, treated with methanol, was used to remove excess Br2. The optimum ratio of cholesterol to glass beads was found to be 1:10, at which 93% of the bromine released from PBPB can be removed, without removal of the derivitized analytes. The conversion efficiency of alkene to the brominated derivative is extremely low (less than 2%) for ethene, whereas for propene and 1-butene it is 41 and 79%, respectively. For C3---C5 alkenes, this method is 200–300 times more sensitive than analysis of the underivitized analytes by using conventional flame ionization detection.  相似文献   

3.
Ordered mesoporous Fe-doped NiO with dual mesopores, high surface area and well-interconnected crystalline porous frameworks have been synthesized via solvent evaporation-induced co-assembly (EICA) method, by using PS-b-P4VP as structure-directing agent, Ni(acac)2 and Fe (acac)3 as binary inorganic precursor, and showed superior ethanol sensing performances with good sensitivity, high selectivity and fast response-recovery dynamics.  相似文献   

4.
A silica membrane was produced by chemical vapor deposition using tetraethoxysilane (TEOS), phenyltriethoxysilane (PTES) or diphenyldiethoxysilane (DPDES) as the Si source. Amorphous silica was deposited in the mesopores of a γ-alumina film coated on a porous -alumina tube, by evacuating the reactant through the porous wall. Hydrogen permeance at a permeation temperature of 600°C was of the order of 10−7 mol m−2 s−1 Pa−1, and was not greatly dependent on the Si sources. The silica membrane produced using TEOS contained micropores permeable to both helium and hydrogen, but CO2 and larger molecules were only slightly permeated through those mesopores which were left unplugged. The silica membrane produced from DPDES showed a single-component CO2 permeance equivalent to that of single-component He, and CO2/N2 selectivity was approximately 9 at a permeation temperature of 30°C. When a mixture of CO2 and N2 was fed, however, CO2 permeance decreased to the level of N2 permeance. The H2/N2 selectivity, determined from single-component permeances to H2 and N2, was approximately 100, and these permeances remained unchanged when an equimolar mixture of H2 and N2 was fed. Thus, the DPDES-derived membrane possessed two types of micropores, abundant pores through which helium and hydrogen permeated and a small number of pores in which molecules of CO2 and N2 were permeable but not able to pass one another. Neither meso or macropores remained in the DPDES membrane.  相似文献   

5.
Abstract— The pathways and quantum yields of direct photoisomerization of unprotonated and pro-tonated n-butylamine Schiff bases (SB and PSB) of isomeric retinylideneacetaldehyde (C22 aldehyde) were determined in n-hexane, acetonitrile and methanol for the former and in acetonitrile and methanol for the latter. The results are compared with those of the Schiff bases of isomeric retinal (C20 SB and C20 PSB) reported previously (Koyama et al., Photochem. Photobiol. 54 , 433–443, 1991). The isomerization pathways and quantum yields of C22 SB are more or less similar to those of C20 SB, but conspicuous differences in the isomerization pathways are found between C22 PSB and C20 PSB. The homogeneous (exclusive) isomerization of the retinylidene chromophore from all-trum to 11-cis in retinochrome is rationalized not by C22 PSB but by C20 PSB.
Almost complete one-way isomerization from cis to trans of C22 SB (in n-hexane) is ascribed to isomerization via the T1 state, while mutual isomeritation between cis and tram of C22 PSB is ascribed to isomerization via the S1 (Bu) state. The TI potential of C22 SB and the S1 potential of C22 PSB are discussed based on photostationary state compositions.  相似文献   

6.
锂空气电池高容量长寿命Co3O4纳米空心球阴极催化剂   总被引:1,自引:0,他引:1  
刘通  李娜  刘清朝  张新波 《电化学》2015,21(2):157-161
以六水合硝酸钴(Co(NO3)2·6H2O)、六次甲基四胺(HMT)、蔗糖、柠檬酸钠(Na3C6H5O7)为原料,140 oC下水热碳化处理即得反应前驱物,经煅烧处理后,可得多孔Co3O4纳米空心球. 锂空气电池Co3O4/SP阴极催化剂具有优异的循环寿命性能,这归因于Co3O4空心球的纳米颗粒构成、较高比表面积的多孔结构,为电池反应提供了大量的反应位点,为充放电产物提供了足够的存储空间.  相似文献   

7.
以K2PdCl4/K2Ni(CN)4为前驱体制备了具有凝胶特性的氰胶(Cyanogels), 利用硼氢化钠还原氰胶得到三维多孔珊瑚状PdNi合金前驱体, 在此基础上通过原位Galvanic置换反应, 制备得到内核为PdNi合金、 表面具有不同厚度Au层的三维多孔PdNi@Au催化剂. X射线衍射(XRD)分析和透射电子显微镜(TEM)观测结果显示, 该三维网状结构由粒径约7 nm的纳米颗粒相互连接形成; 能量分散光谱(EDX)线性扫描和元素分布(Mapping)分析显示该催化剂具有典型的核壳结构. 电化学测试结果表明, 表面Au层的厚度影响PdNi@Au催化剂的性能, 当Au的含量(摩尔分数)为5.6%时, 催化剂显示出对甲酸最佳的电催化活性, 对甲酸电催化氧化的峰电流密度达到商业化铂黑催化剂的7.2倍.  相似文献   

8.
Al2O3 porous nanosolid was prepared via solvothermal hot-press(SHP) method. The dielectric constant of Al2O3 porous nanosolid is as low as 2.34, while its compressive strength is very poor. In order to improve the compressive strength and maitain low dielectric constant, polyimide was introduced to prepare Al2O3/polyimide composite porous nanosolid. Compared to Al2O3 porous nanosolid, Al2O3/polyimide composite porous nanosolid possesses much higher compressive strength, which reaches its saturation value when the mass loading of polyimide is 7.75%. In addition, the in situ Fourier transformation infrared(FTIR) monitoring result reveals that Al2O3/polyimide composite porous nanosolid is stable up to 400℃.  相似文献   

9.
As a new 2D material with excellent chemical stability, good electric conductivity, and high specific surface area, graphene has been widely used in energy storage and conversion devices. However, 2D graphene layers are easily stacked, which may significantly reduce the surface area and degrade the excellent electrical properties of graphene. To avoid this, one of the most effective methods is to construct 3D graphene (3DG) with specific porous microstructures. Chemical vapor deposition (CVD) is an important method for the synthesis of high-quality 3DG, where templates play a defining role in controlling the structure and cost of 3DG. Metallic materials with 3D microstructures, such as nickel foam, have proven to be useful as substrates for the growth of high-quality 3DG. However, metal substrates are usually expensive, and the pickling solution generated after etching may cause environmental problems. Therefore, non-metallic substrate materials with lower costs have been investigated for the preparation of 3DG. Herein, we developed a novel template material, mammal bone ashes, for the CVD preparation of 3DG. Mammal bone ash is an inexpensive and abundant biomass hydroxyapatite. During the high-temperature CVD reaction, the bone ash powders were slightly sintered to form a continuous porous structure with graphene coating. The morphology of 3DG is inherited from the microstructure of bone ash templates. After removing the bone ash template with hydrochloric acid, the template-grown 3DG was obtained with a unique bicontinuous structure, i.e. both the graphene framework and the void space were continuous. In addition, the pickling solution of the bone ash templates after etching was exactly the same as that for the raw materials for the production of phosphoric acid to achieve high atom utilization. We further optimized the graphitization degrees, layer number, and porous morphology of 3DGs. The microstructure evolution of 3DG is highly relevant to the layer thickness and uniformity of graphene layers. A short growth time would lead to a non-uniform and thin layer of graphene, which is not able to support a complex 3D porous structure. In contrast, a uniform graphene layer with proper thickness is capable of forming a robust 3D architecture. In addition, the facile CVD method can be extended to a series of metal phosphate templates, including tricalcium phosphate [Ca3(PO4)2], trimagnesium phosphate [Mg3(PO4)2], and aluminum phosphate [AlPO4]. 3DG with bicontinuous morphology is promising as a conductive frame material in electrochemical energy storage devices. As an illustration, high-performance Li-S batteries were fabricated by the uniform composition of an S cathode on 3DG. In comparison with heavily stacked 2D graphene sheets in reduced graphene oxide / S composite, the non-flat structure of 3DGs remained unchanged even after the harsh melt-diffusion process of high-viscosity liquid sulfur. The resulting 3DG/S cathode delivered a high specific capacity of ~550 mAh∙g-1 at a high current rate (2C). Our work opens an avenue to the low-cost and high-utility production of 3D graphene, which could be integrated with the well-developed phosphorus chemical industry.  相似文献   

10.
锰基氧化物作为锌离子电池正极具有高比容量和低成本等优点, 但在电化学循环过程中不可逆相变、 锰的溶解和电极/电解质界面不稳定导致其在小电流密度、 深度放电条件下的循环性能差. 针对以上问题, 合成了三维(3D)多孔MnOx立方盒子, 并在其表面包覆In2O3层, 获得3D多孔MnOx@In2O3立方盒子. 结果显示, MnOx@In2O3立方盒子具有大量孔径约10 nm左右的孔, 有利于H+和Zn2+的快速传输; In2O3包覆层均匀包覆于3D多孔MnOx立方盒子的孔壁上, 有利于抑制MnOx在电化学循环过程中的不可逆相变和锰的溶解, 稳定电极/电解质界面. 电化学测试结果表明, 该3D多孔MnOx@In2O3电极在0.3 A/g的小电流密度、 深度放电条件下能稳定循环400次以上, 容量保持260 mA·h/g; 在1. 8 A/g电流密度下可稳定循环4000次以上, 容量保持81 mA·h/g; 即使在高电流密度6.0 A/g下仍保持73.4 mA·h/g的高可逆容量. 恒电流间隙滴定(GITT)和循环伏安测试结果表明, 3D多孔MnOx@In2O3电极比3D多孔MnOx具有更高的离子扩散速率, 有利于提升其高倍率容量. 电化学阻抗谱结果表明, 3D多孔MnOx@In2O3电极具有比3D多孔MnOx更稳定的电极/电解质界面, 有利于提升其循环寿命. 2000次循环后的扫描电子显微镜(SEM)结果表明, MnOx@In2O3电极表面仍分布少量In2O3, 以确保电极/电解质界面和循环的稳定性.  相似文献   

11.
通过两步活化和化学共沉淀法分别制备了芦荟衍生多孔碳(aloe-derived porous carbon,APC)、ZnMoO4和ZnMoO4/APC催化剂,并研究了3种催化剂作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)对电极时在D35/Y123染料和Cu2+/Cu+体系中的电化学特性和光伏性能。通过场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)和N2吸附-脱附测试表征了APC、ZnMoO4和ZnMoO4/APC的微观结构、化学成分、比表面积和孔结构。结果表明:APC为多孔网络结构,比表面积为1 439m2·g-1,ZnMoO4纳米颗粒均匀嵌入或分散在APC表面。ZnMoO4/APC在D35或Y123染料和Cu2+/Cu+电解液的DSSC中,分...  相似文献   

12.
唐君  郭凯珠  陈文东  宋培培  封顺  胡巢凤  许瑞莲  田瑞军 《色谱》2016,34(12):1264-1270
建立了基于Fe_3O_4/乙二胺四乙酸(EDTA)磁性粒子的集成化蛋白质组学研究方法。首先用共沉淀法合成EDTA负载的Fe_3O_4/EDTA磁性粒子。在优化的溶液条件下(95%乙腈-1%三氟乙酸,体积分数),100μg Fe_3O_4/EDTA磁性粒子可吸附12.4μg牛血清白蛋白(BSA),吸附容量是商品化磁珠的10倍左右。以BSA作为标准蛋白质,对所合成的Fe_3O_4/EDTA磁性粒子作为蛋白质组学反应器的酶解时间进行了优化,发现Fe_3O_4/EDTA磁性粒子处理BSA酶解1、8和16 h的肽段序列覆盖率和特征肽段结果相当。因此,可以将复杂的蛋白质样品前处理时间缩短至2 h内。最后,将所合成的Fe_3O_4/EDTA磁性粒子应用于血清的蛋白质组学研究,成功地鉴定出218种蛋白质,其中包含了41种美国食品药品管理局(FDA)认证的生物标志物。所发展的基于Fe_3O_4/EDTA磁性粒子的蛋白质组学样品前处理方法将蛋白质样品预富集、还原、烷基化、酶解、多肽除盐和洗脱等步骤集成到一起,减少了样品转移和处理所造成的损失。这种技术具有快速、灵敏和易于操作的特点,可用于临床蛋白质组学研究。  相似文献   

13.
采用静电纺丝法制备了PVP/FeC6H5O7复合纳米纤维, 并将复合纤维在500 ℃高温烧结3 h, X射线衍射分析(XRD)表明, 烧结后的产物为正尖晶石结构的γ-Fe2O3晶体. 扫描电子显微镜(SEM)观测结果表明, 制得了直径均匀、 连续的复合纳米纤维, 其平均直径约为1000 nm; 烧结后的γ-Fe2O3纳米纤维保持了其连续性, 但纤维发生了收缩, 直径较烧结前小, 平均约为600 nm. 比表面积分析表明, γ-Fe2O3纳米纤维比表面积为57.18 m2/g. 气敏性能测试结果表明, 230 ℃为γ-Fe2O3纳米纤维检测丙酮气体的最佳工作温度. 在此温度下, γ-Fe2O3纳米纤维对丙酮气体表现出高响应度[S=6.9, c(Acetone)=7.88×104 mg/m3]和线性度(7.88×102~1.58×105 mg/m3浓度范围内). 同时, γ-Fe2O3纳米纤维气体传感器件还表现出良好的长期稳定性.  相似文献   

14.
采用简单的水解、热处理方法合成三氧化二铁(Fe2O3)负载在三维多级孔类石墨烯(3D HPG)上的复合材料. 3D HPG有效的导电网络有利于负载纳米Fe2O3,使其呈均匀分散状态,并有效增强纳米复合物的导电率,提高Fe2O3利用率,抑制纳米Fe2O3的团聚,从而制得稳定、高性能的锂离子电池负极材料. Fe2O3-3D HPG电极在50 mA·g-1电流密度下首次放电容量达1745 mAh·g-1,50周期放电容量保持于1095 mAh·g-1.  相似文献   

15.
采用静电自组装方法,分两步合成Fe(OH)3/GO前驱体(GO:氧化石墨烯),再通过水热反应和600°C高纯氮气气氛下煅烧,获得了Fe3O4/石墨烯复合材料.通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、拉曼(Raman)光谱等多种分析,发现该复合材料具有三维多孔石墨烯网络结构.把合成的这种Fe3O4/石墨烯复合材料作为锂离子电池负极材料,电化学测试结果表明其具有优良的电化学性能:首次放电容量为1390 mAh·g-1,50次循环后容量为819 mAh·g-1.通过对比实验表明,三维石墨烯网络结构的形成对复合材料的电化学循环稳定性起着关键作用.  相似文献   

16.
A novel synthesis of hierarchical porous carbons (HPCs)with 3D open-cell structure based on nanosilica- embedded emulsion-templated polymerization was reported. An oil-in-water emulsion containing SiO2 colloids was fabricated using liquid paraffin as an oil phase, resorcinol/formaldehyde and silica sol as an aqueous phase, and Span 80/Tween 80 as emulsifiers. HPCs with macropore cores, open meso/ macropore windows, and abundant micropores were synthesized by the polymerization and carbonization of the emulsion, followed by scaffold removal and further KOH activation. A typical HPCs sample as supercapacitor electrode shows the charge/discharge capability under large loading current density (30 A/g) coupling with a reasonable electrochemical capacitance in KOH electrolyte solution.  相似文献   

17.
A series of porous carbon materials was synthesized via high temperature pyrolysis from well-defined and thermally stable precursors, namely porous organic frameworks(POFs), in inert atmosphere. The porous carbon materials showed enhanced gas adsorption capacities together with increased heat of adsorption and stronger affinity between the frameworks and the gases as compared to the precursor materials. To exemplify, sample C-POF-TBBP-1000 with a high BET surface area of 1290 m2/g can adsorb 2.8 mmol/g CH4(273 K, 101.325 kPa), 5.4 mmol/g CO2(273 K, 101.325 kPa) and 2.2% H2(mass fraction, 77 K, 101.325 kPa), thereby surpassing most other porous adsorbent materials reported till date. The study highlights the potential of porous carbons derived from novel porous organic framework structures for gas adsorption applications.  相似文献   

18.
Five transition metal coordination compounds, [Mn2(8-qoac)2(bdc)(H2O)4](1)(8-qoacH=quinoline-8-oxy- acetate acid, H2bdc=benzene-1,4-dicarboxylic acid), [Zn4(8-qoac)4(bdc)2]n(2), {[Cd2(8-qoac)2(Hip)2(H2O)2]· (H2O)4}n(3)(H2ip=benzene-1,3-dicarboxylic acid), [Pb3(8-qoac)2(bdc)1.5(H2O)Cl]n(4) and [Zn2(8-qoac)(8-ql)(bdc)]n (5)(8-Hql=8-hydroxyquinoline), were synthesized by hydrothermal syntheses of metal salts with benzenedicarboxy- lic acid and 8-qoacH. Compound 1 possesses a discrete dimer bridged by bdc2- ligand. Compound 2 presents a 2D layer network constructed from bdc2- linkers and 1D infinite ribbons, in which Zn(II) centers are bridged by 8-qoac- with a tetradentate binding mode. Compound 3 displays a 1D zigzag chain, with adjacent chains further connected via extensive O-H···O hydrogen bonds to generate a 3D supramolecular structure. Compound 4 shows a 3D framework containing trinuclear lead secondary building units and bdc2- linkers, in which a new coordination mode of 8-qoac- ligand is observed. In compound 5, Zn(II) ions are simultaneously bridged by 8-qoac-, 8-ql- and bdc2- ligands to form tetranuclear zinc units, which are further interlinked by bdc2- linkers to yield a 2D wave-like layer. Based on intraligand(IL)(π-π*) fluorescent emission, compounds 1―5 possess strong purple fluorescent emissions. In addition, the thermal stabilities of compounds 1―5 were studied.  相似文献   

19.
The sulfate-centered Preyssler-type polyoxometalate was firstly used to construct inorganic-organic hybrid materials, which exhibits excellent electrocatalytic activity toward reduction of H2O2 and NO2-.  相似文献   

20.
Two new compounds, [Ni(en)2]{[Ni(en)2]2[MoVI6MoV2VIV8O40(SiO4)]}[(NH2)2(C2H4)2NH]·2H2O(1) and [Ni(en)2]{[Ni(en)2]2[MoVI5MoV3VIV8O40(VO4)]}(en)·H2O(2)(en=ethylenediamine), have been hydrothermally synthesized and characterized by elemental analysis, infrared(IR), X-ray photoelectron spectroscopy(XPS), electron spin-resonance(ESR) and thermogravimetric(TG) analysis and single-crystal X-ray diffraction(XRD) analysis. Both the compounds exhibit a 1D chain composed of bi-supporting tetra-capped Keggin clusters and nickle coordination fragments. The 1D chains are further assembled into a 3D supramolecular network with different packing modes via hydrogen bonds. The magnetic susceptibility of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号