首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photodynamic activities of a porphyrin-C60 dyad (P-C60) and its metal complex with Zn(II) (ZnP-C60) were compared with 5-(4-acetamidophenyl)-10,15,20-tris(4-methoxyphenyl)porphyrin (P), both in homogeneous medium-bearing photooxidizable substrates and in vitro on the Hep-2-human-larynx-carcinoma cell line. This study represents the first evaluation of dyads, with a high capacity to form a photoinduced charge-separated state, to act as agents to inactivate cells by photodynamic therapy (PDT). Absorption and fluorescence spectroscopic studies were performed in toluene and N,N-dimethylformamide (DMF). The emission of the porphyrin moiety in the dyads is strongly quenched by the attached fullerene C60 moiety. The singlet molecular oxygen, O2(1delta(g)), productions (phi(delta)) were determined using 9,10-dimethylanthracene (DMA). The values of phi(delta) were strongly dependent on the solvent's polarity. Comparable phi(delta) values were found for dyads and P in toluene, while O2(1delta(g)) production was significantly diminished for the dyads in DMF. In more polar solvent, the stabilization of charge-transfer state takes place, decreasing the efficiency of porphyrin triplet-state formation. Also, both dyads photosensitize the decomposition of L-tryptophan in DMF. In biological medium, no dark cytotoxicity was observed using sensitizer concentrations < or = 1 microM and 24 h of incubation. The uptake of sensitizers into Hep-2 was studied using 1 microM of sensitizer and different times of incubation. Under these conditions, a value of approximately 1.5 nmol/10(6) cells was found between 4 and 24 h of incubation. The cell survival after irradiation of the cells with visible light was dependent upon light-exposure level. A higher photocytotoxic effect was observed for P-C60, which inactivates 80% of cells after 15 min of irradiation. Moreover, both dyads keep a high photoactivity even under argon atmosphere. Thus, depending on the microenvironment where the sensitizer is localized, these compounds could produce biological photodamage through either an O2(1delta(g))-mediated photoreaction process or a free-radicals mechanism under low oxygen concentration. These results show that molecular dyads, which can form a photoinduced charge-separated state, are a promising model for phototherapeutic agents, with potential applications in cell inactivation by PDT.  相似文献   

2.
用从头算方法,在HF/6-31 G^**和CASSCF(8,8)/6-31G^*基组水平上对四氰基乙烯与四甲基乙烯间电子转移的溶剂效应及电荷分离激发态进行了理论计算与研究。通过对给、受体各种几何构型的优化,计算了孤立给、受体之间的电荷分离反应热。在假定碰撞络合物形成过程中给、受体内部结构不发生变化的前提下,通过优化给、受体中心间距的方法,找出了络合物的稳定构型。计算了水溶剂及二氯甲烷溶剂中两种稳定构型络合物的电荷分离激发态,计算结果表明光激发可以直接导致体系的电荷分离。  相似文献   

3.
4.
A series of naphthalimide (NI)- and 5-bromocytosine ((br)C)-modified oligodeoxynucleotides (ODNs) were prepared, and their lifetimes of the charge-separated states during the photosensitized one-electron oxidation of DNA were measured. Various lifetimes of the charge-separated states were observed depending on the sequence and the incorporation sites of (br)C, and the oxidation potential of G in the (br)C:G base-pair relative to that of G in the C:G base-pair and in the GGG sequence was determined by comparing the lifetimes of the charge-separated states. The change in the cytosine C5 hydrogen to bromine resulted in a 24 mV increase in the oxidation potential of G in the (br)C:G base-pair as compared to that of G in the C:G base-pair, the value of which is comparable to a 58 mV decrease in the oxidation potential of G in the GGG sequence. These results clearly demonstrate that hole transfer in DNA can be controlled through hydrogen bonding by introducing a substituent on the cytosine.  相似文献   

5.
To elucidate how the protein-ligand docking structure affects electronic interactions in the electron-transfer process, we have analyzed time-resolved electron paramagnetic resonance spectra of photoinduced charge-separated (CS) states generated by light excitation of 9,10-anthraquinone-1-sulfonate (AQ1S(-)) bound to human serum albumin at a hydrophobic drug-binding region. The spectra have been explained in terms of the triplet-triplet electron spin polarization transfer model to determine both the geometries and the exchange couplings of the CS states of AQ1S(2-?)-histidine-242 radical cation (H242(+?)) and AQ1S(2-?)-tryptophan-214 radical cation (W214(+?)). For the CS state of the former, it has been revealed that, due to the orthogonal relationship between the singly occupied molecular orbitals of AQ1S(2-?) and H242(+?), the electronic coupling (5.4 cm(-1)) is very weak, contributing to the prevention of energy-wasting charge recombination, even at a contact edge-to-edge separation.  相似文献   

6.
Photoexcitation of a zinc phthalocyanine-perylenediimide (ZnPc-PDI) dyad affords the triplet excited state without the fluorescence emission, whereas addition of Mg2+ to the photoexcited ZnPc-PDI results in formation of a long-lived charge-separated state (ZnPc.+-PDI.-/Mg2+) in which PDI.- forms a complex with Mg2+.  相似文献   

7.
A stable 1 : 1 inclusion complex of Ru(bpy)(3)-MV(2+) with cucurbit[8]uril (CB[8]) is formed in aqueous solution; upon light irradiation, a long lived (tau approximately 2 micros) charge-separated state Ru(3+)-MV(+ )-CB[8] is observed.  相似文献   

8.
To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.  相似文献   

9.
A rotaxane tethering both fullerene (C60) and ferrocene (Fc) moieties (abbreviated as (C60;Fc)rotax+) was synthesized in a good yield by the urethane end-capping of pseudorotaxane based on the crown ether-secondary amine motif. In (C60;Fc)rotax+, the C60 group serving as an electron acceptor is attached to the crown ether wheel, through which the axle with a Fc group acting as an electron donor on its end penetrates. The intrarotaxane photoinduced energy-transfer and electron-transfer processes between C60 and Fc in (C60;Fc)rotax+ have been investigated by time-resolved transient absorption and fluorescence measurements with changing solvent polarity. Nanosecond transient absorption measurements of the rotaxane demonstrated that the charge-separated state (C60*-;Fc*+)rotax+ is formed mainly via the excited triplet state of C60 in polar solvents. The lifetime of (C60*-;Fc*+)rotax+ was evaluated to be 20 ns in dimethylformamide (DMF) at room temperature. With lowing temperature, the lifetime of (C60*-;Fc*+)rotax+ extends to 270 ns in DMF at -65 degrees C, due to the structural changes leaving C60*- and Fc*+ at a relatively long distance in the low-temperature region.  相似文献   

10.
Large π-conjugated compounds are promising building blocks for organic thin-film electronics such as organic light-emitting diodes, organic field-effect transistors, and organic photovoltaics. Utilization of porphyrins and phthalocyanines for this purpose is highly fascinating because of their excellent electric, photophysical, and electrochemical properties as well as intense self-assembling abilities arising from π-π stacking interactions. This paper focuses on fundamental aspects of self-assembled structures that have been obtained from porphyrin and phthalocyanine building blocks and more complex composites for photoinduced charge separation and charge transport toward the potential applications to organic thin-film electronics.  相似文献   

11.
Seeking to immobilize photochromophores on metallic surfaces, we have synthesized four molecules which contain both a photoresponsive dihydroindolizine (DHI) core and a sulfur containing moiety, which allow for their assembly onto gold substrates. Sonogashira, Suzuki, or Ullmann couplings are employed to generate pyridines with pendant thioacetates (or disulfides). The pyridines are condensed with spiro[2-cyclopropene-1,9′-[9H]fluorene]-2,3-dimethyl ester affording the targeted DHIs.  相似文献   

12.
Photoexcitation of an electron donor-acceptor linked dyad containing gold(III) and zinc(II) porphyrins (ZnPQ-AuIIIPQ+) results in electron transfer from the singlet excited state of ZnPQ to the metal center of AuPQ+ to produce the charge-separated state (ZnPQ*+-AuIIPQ) which has a long lifetime (10 mus) in nonpolar solvents such as cyclohexane and toluene.  相似文献   

13.
ABSTRACT

Lipids and DNAs are two major building blocks of life. Interestingly, by chemically linking these two natural compounds together, synthetic lipid-DNA conjugates exhibit several attractive features for cell membrane studies. These lipid-DNA conjugates are amphiphilic macromolecules combining the cell membrane insertion capability of lipids with the properties of DNAs in precise hybridization and programmability. These supramolecular conjugates have demonstrated exciting applications from generating cell membrane nanopores to transmembrane cargo deliveries, and from analyzing cell membrane events to tissue engineering. In this review, we will discuss the design, structures, and biological applications of lipid-DNA conjugates, with an emphasis on their functions on live cell membranes. We expect, in the near future, significant advancement in our ability to understand, control, and apply these cell membrane-modified lipid-DNA conjugates.  相似文献   

14.
Within the context of the Born-Oppenheimer approximation all molecules with dipole moments greater than 1.625 D have stable anions. The applicability of the Hartree-Fock approximation to describe the stability of such anions is discussed. It is concluded that correlation effects are relatively more important for molecules such as HF and HCN than the more polar alkali halides.  相似文献   

15.
A new and simple proof is given of the theorem that ab initio Born—Oppenheimer energy calculations for any polar molecule having an electric dipole moment μ > 1.625 debye must yield a positive electron affinity.  相似文献   

16.
Membrane potential is determined by the combination of the properties of ions and of the membrane. There is, therefore, a possibility that the properties of ions can be reflected on the membrane potential more effectively by artificially modifying the membrane properties. In this paper, the membrane is assumed to have no charge but to adsorb cations or anions selectively, and the effect of Langmuir-type adsorption of ions on the membrane potential is investigated theoretically. The variation of the amount of adsorbed ions affects not only the surface potential but also the diffusion potential within the membrane. The membrane potential shows a minimum or a maximum with the variation of the ion concentration in the bulk solution. This phenomenon results from the variation of the amount of ions adsorbed onto the membrane surfaces. Therefore, information on both the adsorption coefficient of a given ion and the amount of saturation of absorption of the ion is obtained from an analysis of the membrane potential. The theory is applied to the analysis of the affinity membrane potential, which can be used for the determination of blood type, and it is shown that the theory is in good agreement with experimental data.  相似文献   

17.
18.
Memristive and memcapacitive behaviors are observed from ion transport through single conical nanopores in SiO(2) substrate. In i-V measurements, current is found to depend on not just the applied bias potential but also previous conditions in the transport-limiting region inside the nanopore (history-dependent, or memory effect). At different scan rates, a constant cross-point potential separates normal and negative hysteresis loops at low and high conductivity states, respectively. Memory effects are attributed to the finite mobility of ions as they redistribute within the negatively charged nanopore under applied potentials. A quantative correlation between the cross-point potential and electrolyte concentration is established.  相似文献   

19.
The transport of methanol through Nafion® membrane in diffusion cell is investigated using the open circuit potential method at different initial methanol concentration solutions. A simple mathematical model based on quasi-steady-state diffusion for the transport of methanol across the membrane in a diffusion cell is developed to simulate the experimental data in order to measure the methanol permeability. The influence of the diffusion cell parameters and thickness of the membrane on the methanol permeability measurement has been evaluated and analyzed. By means of Maclaurin expansion technique, this model can be used to predict the deviation of methanol permeability determined by steady-state diffusion model.  相似文献   

20.
Kim JS  Kim SK  Ko JW  Kim ET  Yu SH  Cho MH  Kwon SG  Lee EH 《Talanta》2000,52(6):1143-1148
A series of calixcrown ethers for which the cavity size of the crown ring is varied from crown-6 to crown-7 to crown-8 were examined for the transport abilities toward alkali metal ions. These ligands were incorporated into supported liquid membranes (SLMs) and into polymer inclusion membranes (PIMs) composed of cellulose triacetate (CTA) as a support and 2-nitrophenyl octyl ether (NPOE) and tris(2-butoxyethyl) phosphate (TBEP) as a plasticizer. In both membrane systems, calixcrown-6 showed the best selectivity toward a cesium ion over other alkali metal ions. The polymeric CTA membrane showed more rapid transport rate as well as higher durability than did the SLMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号