首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox-assisted asymmetric Ostwald ripening of dots to rods was observed upon annealing a concentrated dispersion of CdSe nanocrystals (NCs) containing 0.1 M CdCl2 in 3-amino-1-propanol (APOL)/H2O (v/v = 9/1) at 135 degrees C. Transmission electron microscopic investigation, along with UV-vis and photoluminescence results, revealed that, while the length of these NCs increased upon annealing, their diameter remained constant. The surface oxidation of NC Se atoms to SeO2 and its subsequent dissolution into the basic APOL/H2O mixture as SeO32- was found instrumental for such dot-to-rod transformation. The amine-assisted SeO2 reduction to Se0 (as confirmed by X-ray photoelectron spectroscopy and X-ray diffraction results) provides the Se source for further NC growth. The preferential growth along the c-axis leads to the formation of rods with zinc blende CdSe structure at its growing ends, due to the low-temperature growth conditions.  相似文献   

2.
Yin J  Cao H 《Inorganic chemistry》2012,51(12):6529-6536
We report here for the first time the hollow, metastable, single-crystal, rhombohedral In(2)O(3) (rh-In(2)O(3)) nanocrystals synthesized by annealing solvothermally prepared InOOH solid nanocrystals under ambient pressure at 400 °C, through a mechanism of the Kirkendall effect, in which pore formation is attributed to the difference in diffusion rates of anions (OH(-) and O(2-)) in a diffusion couple. The InOOH solid nanocrystals were prepared via a controlled hydrolysis solvothermal route by using In(NO(3))(3)·4.5H(2)O as a starting material and glycerol-ethanol as a mixed solvent. The glycerol-ethanol mixed solvent plays a key role on the formation of the intermediate InOOH, thus the final product of rh-In(2)O(3). The as-synthesized In(2)O(3) nanocrystals present excellent photocatalytic degradation of rhodamine B (RhB) and methylene blue (MB) dyes, which present ~92% degradation of RhB or MB after 4 or 3 h reaction in the presence of the as-synthesized In(2)O(3) nanocrystals, respectively.  相似文献   

3.
Monodisperse Fe3O4 and FeO nanocrystals (NCs) with different sizes (from 10 nm to 50 nm) and different shapes (cube, sphere, and ellipsoid) were synthesized by simply adjusting reaction temperature or molar ratio of Fe/oleic acid (OA) during the decomposition of FeO(OH) in noncoordinating solvent. The concentration of OA affected the nucleation and growth of NCs by improving the chemical reaction driving force during the syntheses of different types of iron oxide NCs. It has been found that the reaction temperature influenced the reaction activity between FeO(OH) and OA. The structure of Fe oleate complexes was studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM) were used for structural and chemical characterization of as-prepared iron oxide NCs.  相似文献   

4.
We report the growth of NaCl-type binary nanocrystal (NC) superlattice membranes by coassembly of FePt and MnO NCs at the liquid-air interface. The constituent FePt NCs were converted into the hard magnetic L1(0) phase by thermal annealing at 650 °C without degradation of the long-range NC ordering. In contrast, both FePt-only NC superlattices and FePt-MnO disordered NC mixtures showed substantial FePt sintering under the same annealing conditions. Our results demonstrate that the incorporation of FePt NCs into binary superlattices can solve the problems of FePt sintering during conversion to the L1(0) phase, opening a new route to the fabrication of ordered ferromagnetic NC arrays on a desired substrate for high-density data storage applications.  相似文献   

5.
We studied the self-assembly of inorganic nanocrystals (NCs) confined inside nanoliter droplets (plugs) into long-range ordered superlattices. We showed that a capillary microfluidic platform can be used for the optimization of growth conditions for NC superlattices and can provide insights into the kinetics of the NC assembly process. The utility of our approach was demonstrated by growing large (up to 200 μm) three-dimensional (3D) superlattices of various NCs, including Au, PbS, CdSe, and CoFe(2)O(4). We also showed that it is possible to grow 3D binary nanoparticle superlattices in the microfluidic plugs.  相似文献   

6.
Controlled growth of nanocrystals (NCs) is produced by self-seeded nucleation with preferential thermodynamic stability. The intermediate reactants undergo in situ phase transformation forming the final products. The growth followed by irreversible phase transformation leads to the complete separation of nucleation and growth, thereby allowing size tuning of the final NCs.  相似文献   

7.
We investigated the structural stability of colloidal PbS nanocrystals (NCs) self-assembled into superlattice (SL) allotropes of either face-centered cubic (fcc) or body-centered cubic (bcc) symmetry. Small-angle X-ray scattering analysis showed that the NC packing density is higher in the bcc than in the fcc SL; this is a manifestation of the cuboctahedral shape of the NC building block. Using the high-pressure rock-salt/orthorhombic phase transition as a stability indicator, we discovered that the transition pressure for NCs in a bcc SL occurs at 8.5 GPa, which is 1.5 GPa higher than the transition pressure (7.0 GPa) observed for a fcc SL. The higher structural stability in the bcc SL is attributed primarily to the effective absorption of loading force in specific SL symmetry and to a lesser extent to the surface energy of the NCs. The experimental results provide new insights into the fundamental relationship between the symmetry of the self-assembled SL and the structural stability of the constituent NCs.  相似文献   

8.
We prepared the nanocrystals (NCs) of CdTe, CdTe:Yb, and CdTe:Yb, Mn vis water phase synthesis and examined their structural, morphological, and optical properties. All NCs have a particle diameter of about 2–4 nm, and the monodispersed, uniform spherical, cubic structure of the CdTe NC remains largely unchanged after the doping with Yb and Mn. According to the X-ray diffraction results, the CdTe, CdTe:Yb, and CdTe:Yb, Mn NCs all have a cubic structure, and the diffraction peak of CdTe:Yb NC is at a lower 2θ angle compared with that of the CdTe NC. With the CdTe NC as the reference, the UV–Vis absorption of the CdTe:Yb and the CdTe:Yb, Mn NCs exhibits a blueshift and a redshift, and the emission of CdTe:Yb and CdTe:Yb, Mn has a blueshift of about 12 nm and a redshift of about 73 nm, respectively. The CdTe:Yb, Mn NCs have higher quantum yields than the CdTe:Yb NC, and the quantum yield is the highest when CdTe is doped with 1:1 Mn2+/Yb3+. In addition, both the CdTe:Yb and CdTe:Yb, Mn NCs have a shorter fluorescence lifetime than the CdTe NC.  相似文献   

9.
Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM‐mediated one‐pot aqueous synthesis method for the production of single‐crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM‐stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC‐based catalyst systems.  相似文献   

10.
Successful realization of highly crystalline and densely packed Ag2S nanocrystal (NC) films has been achieved by directly converting precursor molecules, Ag(SCOPh), on preheated substrates. When an aliquot of Ag(SCOPh) solution dissolved in trioctylphosphine (TOP) is applied on preheated solid substrates at 160 degrees C, such as SiO2/Si, H-terminated Si, and quartz. Ag2S NC thin films have been formed with instant phase and color changes of the precursor solutions from pale yellow homogeneous solution to black solid films. The average diameter of individual Ag2S NCs forming thin films is ca. 25 nm, as confirmed by examining both isolated Ag2S NCs from thin films and as-made thin film samples by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Powder X-ray diffraction (XRD) pattern shows that the synthesized Ag2S NCs have well-defined monoclinic acanthite phase. Direct precursor conversion process has resulted in densely packed Ag2S NCs with reduced interparticle distances owing to efficient removal of TOP during the reaction. Compared to the devices fabricated by the drop-coating process, Ag2S thin film devices fabricated by direct precursor conversion process have shown a ca. 300-fold increased conductance. Such Ag2S NC devices have also displayed reliable photoresponses upon white light illumination with high photosensitivity (S approximately equal to 1).  相似文献   

11.
Au nanocrystals (NCs) with an unprecedented hexoctahedral structure enclosed exclusively by high-index {321} facets have been prepared for the first time. Manipulating the NC growth kinetics by controlling the amount of reductant and the reaction temperature in the presence of a suitable surfactant was the key synthetic lever for controlling the morphology of the Au NCs. The hexoctahedral Au NCs exhibited efficient optical and surface-enhanced Raman scattering activities due to their unique morphological characteristics.  相似文献   

12.
Pyrite nickel disulfide and millerite nickel monosulfide have been successfully prepared by solvothermal method based on the reaction of Ni(NO3)26H2O and H2NC(S)NH2 in benzene and ethylenediamine (EDA). The final products were characterized by X-ray powder diffraction(XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). The effects of the solvent, reaction temperature and time on the morphology and phase of the products have been discussed.  相似文献   

13.
The present work focuses on the topochemical photoconversion process in which alpha-trans-cinnamic acid becomes alpha-truxillic acid. This solid-state [2 + 2] cycloaddition reaction has previously been studied with X-ray diffraction, atomic force microscopy, and vibrational spectroscopy. However structural and kinetic details about the reaction are still debated. We present results from (13)C cross-polarization magic angle spinning solid-state NMR experiments that suggest that the Johnson, Mehl, Avrami, and Kolmogorov model of phase transformation kinetics can be applied to this system. The model elucidates parameters of the reaction, such as the nucleation rate, diffusion rate, and dimensionality of the reaction. From our data, it is concluded that this reaction follows one-dimensional growth with a decreasing nucleation rate.  相似文献   

14.
Lead-free halide perovskite nanocrystals (NCs) represent a group of emerging materials which hold promise for various optical and optoelectronic applications. Exploring facile synthetic methods for such materials has been of great interest to not only fundamental research but also technological implementations. Herein, we report a fundamentally new method to access lead-free Bi-based double perovskite (DP) and quadruple perovskite (or layered double perovskite, LDP) NCs based on a post-synthetic transformation reaction of Cs3BiX6 (X = Cl, Br) zero-dimensional (0D) perovskite NCs under mild conditions. The produced NCs show good particle uniformity, high crystallinity, and comparable optical properties to the directly synthesized NCs. The relatively slow kinetics and stop-on-demand feature of the transformation reaction allow real-time composition–structure–property investigations of the reaction, thus elucidating a cation-alloyed intermediate-assisted transformation mechanism. Our study presented here demonstrates for the first time that post-synthetic transformation of 0D perovskite NCs can serve as a new route towards the synthesis of high-quality lead-free perovskite NCs, and provides valuable insights into the crystal structures, excitonic properties and their relationships of perovskite NCs.

Lead-free perovskite nanocrystals are synthesized by post-synthetic transformation reactions. The post-synthetic transformations show the structural flexibility of zero-dimensional perovskite nanocrystal materials.  相似文献   

15.
Nafady A  Bond AM 《Inorganic chemistry》2007,46(10):4128-4137
The facile solid-solid phase transformation of TCNQ microcrystals into semiconducting and magnetic Ni[TCNQ]2(H2O)2 nanowire (flowerlike) architectures is achieved by reduction of TCNQ-modified electrodes in the presence of Ni2+(aq)-containing electrolytes. Voltammetric probing revealed that the chemically reversible TCNQ/Ni[TCNQ]2(H2O)2 conversion process is essentially independent of electrode material and the identity of nickel counteranion but is significantly dependent on scan rate, Ni2+(aq) electrolyte concentration, and the method of solid TCNQ immobilization (drop casting or mechanical attachment). Data analyzed from cyclic voltammetric and double-potential step chronoamperometric experiments are consistent with formation of the Ni[TCNQ]2(H2O)2 complex via a rate-determining nucleation/growth process that involves incorporation of Ni2+(aq) ions into the reduced TCNQ crystal lattice at the triple phase TCNQ|electrode|electrolyte interface. The reoxidation process, which includes the conversion of solid Ni[TCNQ]2(H2O)2 back to TCNQ0 crystals, is also controlled by nucleation/growth kinetics. The overall redox process associated with this chemically reversible solid-solid transformation, therefore, is described by the equation: TCNQ0(S) + 2e- + Ni2+(aq)+ 2 H2O <==> {Ni[TCNQ]2(H2O)2}(S). SEM monitoring of the changes that accompany the TCNQ/Ni[TCNQ]2(H2O)2 transformation revealed that the morphology and crystal size of electrochemically generated Ni[TCNQ]2(H2O)2 are substantially different from those of parent TCNQ crystals. Importantly, the morphology of Ni[TCNQ]2(H2O)2 can be selectively manipulated to produce either 1-D/2-D nanowires or 3-D flowerlike architectures via careful control over the experimental parameters used to accomplish the solid-solid phase interconversion process.  相似文献   

16.
High-quality ZnS nanocrystals (NCs) of nearly identical size are synthesized using isomeric ligands, o-, m-, p-phenylenediamines (PDAs) that bind to the NC cores. The fluorescence emission from the NC is tunable according to the structure of the isomer. The measured fluorescence quantum yields (QYs) are 2-3 times higher for NCs that are passivated with isomeric PDA ligands than the fluorescence QY of NCs prepared at the absence of PDAs. The NC morphologies were studied by low-angle and wide-angle X-ray diffraction (XRD), and by transmission electron microscopy (TEM). The average correlating sizes were found to be 3.0+/-0.3, 3.7+/-0.30, and 3.0+/-0.5 nm for the NCs that were passivated with o-PDA, m-PDA, and p-PDA, respectively. The Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) studies were carried out to investigate the shell structure and the interaction between the core and the shell. The adsorbed ligands were quantitatively analyzed by TGA. The structure, morphology, and optical properties of these PDA passivated NCs were compared with the NCs prepared in the absence of PDA.  相似文献   

17.
The shape-controlled synthesis of noble metal nanocrystals (NCs) bounded by high-index facets is a current research interest because the products have the potential of significantly improving the catalytic performance of NCs in industrially important reactions. This study reports a versatile method for synthesizing polyhedral NCs enclosed by a variety of high-index Pd facets. The method is based on the heteroepitaxial growth of Pd layers on concave trisoctahedral (TOH) gold NC seeds under careful control of the growth kinetics. Polyhedral Au@Pd NCs with three different classes of high-index facets, including concave TOH NCs with {hhl} facets, concave hexoctahedral (HOH) NCs with {hkl} facets, and tetrahexahedral (THH) NCs with {hk0} facets, can be formed in high yield. The Miller indices of NCs are also modifiable, and we have used the THH NCs as a demonstrative example. The catalytic activities of these NCs were evaluated by the structure-sensitive reaction of formic acid electro-oxidation. The results showed that the high-index facets are generally more active than the low-index facets. In summary, a seeded growth process based on concave high-index faceted monometallic TOH NC templates and careful control of the growth kinetics is a simple and effective strategy for the synthesis of noble metal NCs with high-index facets. It also offers tailorability of the surface structure in shape-controlled synthesis.  相似文献   

18.
Di-n-octylphosphine oxide (DOPO) and di-n-octylphosphinic acid (DOPA), as two of impurities found in commercial tri-n-octylphosphine oxide (TOPO), generate significant differences in the outcomes of CdSe-nanocrystal (NC) syntheses. Using n-tetradecylphosphonic acid (TDPA) as the primary acid additive, quantum dots (QDs) are grown with DOPO added, whereas quantum rods (QRs) are grown in the presence of DOPA. While using oleic acid (OA) as the primary acid additive, QDs are generated and the QDs produced with DOPA exhibit larger sizes and size distributions than those produced with DOPO. (31)P NMR analyses of the reaction mixtures reveal that the majority of the DOPO has been converted into DOPA and di-n-octylphosphine (DOP) with DOP being removed via evacuation over the course of Cd-precursor preparation. The origin of the puzzling differences in the shape control of CdSe NCs in the presence of DOPO and DOPA is elucidated to be the small quantity of DOPO present, which liberates DOP during NC synthesis. In the presence of DOP, regardless of DOPA, the precursor-conversion kinetics and thus the nucleation kinetics are dramatically accelerated, generating a large number of nuclei by consuming a significant amount of CdSe nutrients, favoring QD growth. Similarly, QD growth is favored by the fast nucleation kinetics in the presence of OA, and the broader size distributions of QDs with DOPA are due to a second nucleation event initiated by the more stable Cd-di-n-octylphosphinate component. In contrast, a slow nucleation event results in the growth of QRs in the case of using DOPA and TDPA, where no DOPO or DOP is present. The results, thus, demonstrate the important role of precursor-conversion kinetics in the control of NC morphologies.  相似文献   

19.
A simple, inexpensive, and reproducible procedure is described for large-scale synthesis of highly stable nanocrystalline ZnS powders. Cysteine-capped ZnS nanocrystals (NCs) were produced by a colloidal aqueous synthesis, employing a ligand-competition mechanism in which sulfide was introduced into a preformed zinc-cysteine solution. The synthesis procedure resulted in highly concentrated ZnS NC solutions ( approximately 100 mM) which could be ethanol-precipitated, redissolved, and dried to produce fine powders stable for more than 30 months at 4 degrees C. The NC powders were readily dissolved in aqueous solvents to concentrations as high as 300 mM. ZnS NCs could be prepared without cysteine capping, but only at extremely dilute concentrations ( approximately 0.2 mM ZnSO(4)) as per Sooklal et al. J. Phys. Chem. 100, 4551 (1996). The 30-month-old ZnS NC powders retained their original optical and photocatalytic properties and could be handled much like routine shelf chemicals, unaffected by ambient air or moderate moisture and temperature. UV/vis absorption spectroscopy showed band gap energies (E(g)) ranging from 4.82 eV (257 nm lambda(max)) to 4.47 eV (277 nm lambda(max)) for ZnS samples prepared with 0.25-2.0 initial sulfide ratios (as compared to zinc). Samples stored at 4 degrees C for 30 months showed equivalent band gap energies and spectral profiles. The average NC particle size was estimated to be 6.08+/-0.76 nm by high-resolution transmission electron microscopy. Selected-area electron diffraction and X-ray diffraction analyses concurred in suggesting a hexagonal crystal structure, with diffractions near d=3.1, 1.9, and 1.6 ?. The average NC composition of size-fractionated samples was estimated to be Cys(1)Zn(7)S(6). p-Nitrophenol, a model organic, was photocatalytically degraded using 30-month-old ZnS NC powders dissolved in an aqueous buffer. Rates of degradation (first-order rate constant k=0.261 min(-1); t(1/2)=2.66 min) were comparable to those of experiments using freshly prepared ZnS NCs (first-order rate constant k=0.247 min(-1); t(1/2)=2.80 min), further demonstrating the long-term stability of thus-produced NC powders. Copyright 2000 Academic Press.  相似文献   

20.
Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号