首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion of microbial cells to metal surfaces in aqueous media is an important phenomenon in both the natural environment and engineering systems. The adhesion of two anaerobic sulfate-reducing bacteria (Desulfovibrio desulfuricans and a local marine isolate) and an aerobe (Pseudomonas sp.) to four polished metal surfaces (i.e., stainless steel 316, mild steel, aluminum, and copper) was examined using a force spectroscopy technique with an atomic force microscope (AFM). Using a modified bacterial tip, the attraction and repulsion forces (in the nano-Newton range) between the bacterial cell and the metal surface in aqueous media were quantified. Results show that the bacterial adhesion force to aluminum is the highest among the metals investigated, whereas the one to copper is the lowest. The bacterial adhesion forces to metals are influenced by both the electrostatic force and metal surface hydrophobicity. It is also found that the physiological properties of the bacterium, namely the bacterial surface charges and hydrophobicity, also have influence on the bacteria-metal interaction. The adhesion to the metals by Pseudomonas sp. and D. desulfuricans was greater than by the marine SRB isolate. The cell-cell interactions show that there are strong electrostatic repulsion forces between bacterial cells. Cell probe atomic force microscopy has provided some useful insight into the interactions of bacterial cells with the metal surfaces.  相似文献   

2.
Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis on these adhesion forces to calculate bacterial transmission probabilities from lens case to corneas with a contact lens as an intermediate. Also a new surface thermodynamic parameter was introduced, the interfacial free energy of transmission, which in essence compares the interfacial free energies of bacterial adhesion, calculated from measured contact angles with liquids on the donating and receiving surfaces in the transmission process. Bacterial adhesion forces were generally strongest among all eight strains for the lens case (-6.5 to -12.0 nN) and corneas (-3.5 to -11.5 nN), while contact lenses (-0.6 to -13.1 nN) exerted slightly smaller adhesion forces. Consequently, bacterial transmission from lens case to contact lens yielded a smaller contribution in the final transmission than from contact lens to cornea. Bacterial transmission probabilities as derived from force analyses were higher when the interfacial free energies of transmission were more negative, which is in line with surface thermodynamic principles. Therewith this parameter could provide useful in analyzing other bacterial transmission phenomena between donating and receiving surfaces as well.  相似文献   

3.
The aim of this study was to compare the initial adhesion forces of the uropathogen Enterococcus faecalis with the medical-grade polymers polyurethane (PU), polyamide (PA), and poly(tetrafluoroethylene) (PTFE). To quantify the cell-substrate adhesion forces, a method was developed using atomic force microscopy (AFM) in liquid that allows for the detachment of individual live cells from a polymeric surface through the application of increasing force using unmodified cantilever tips. Results show that the lateral force required to detach E. faecalis cells from a substrate differed depending on the nature of the polymeric surface: a force of 19 +/- 4 nN was required to detach cells from PU, 6 +/- 4 nN from PA, and 0.7 +/- 0.3 nN from PTFE. Among the unfluorinated polymers (PU and PA), surface wettability was inversely proportional to the strength of adhesion. AFM images also demonstrated qualitative differences in bacterial adhesion; PU was covered by clusters of cells with few cell singlets present, whereas PA was predominantly covered by individual cells. Moreover, extracellular material could be observed on some clusters of PU-adhered cells as well as in the adjacent region surrounding cells adhered on PA. E. faecalis adhesion to the fluorinated polymer (PTFE) showed different characteristics; only a few individual cells were found, and bacteria were easily damaged, and thus detached, by the tip. This work demonstrates the utility of AFM for measurement of cell-substrate lateral adhesion forces and the contribution these forces make toward understanding the initial stages of bacterial adhesion. Further, it suggests that initial adhesion can be controlled, through appropriate biomaterial design, to prevent subsequent formation of aggregates and biofilms.  相似文献   

4.
Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.  相似文献   

5.
Bacteria-metal interactions in aqueous solutions are important in biofilm formation, biofouling and biocorrosion problems in the natural environment and engineered systems. In this study, the adhesion forces of two anaerobes (Desulfovibrio desulfuricans and Desulfovibrio singaporenus) and an aerobe (Pseudomonas sp.) to stainless steel 316 in various aqueous systems were quantified using atomic force microscopy (AFM) with a cell probe. Results show that the nutrient and ionic strength of the solutions influence the bacteria-metal interactions. The bacteria-metal adhesion force was reduced in the presence of the nutrients in the solution, because a trace organic film was formed and thus decreased the metal surface wettability. Stronger ionic strength in the solution results in a larger bacteria-metal adhesion force, which is due to the stronger electrostatic attraction force between the positively charged metal surface and negatively charged bacterial surface. Solution pH also influences the interaction between the bacterial cells and the metal surface; the bacteria-metal adhesion force reached its highest value when the pH of the solution was near the isoelectric point of the bacteria, i.e. at the zero point charge. The adhesion forces at pH 9 were higher than at pH 7 due to the increase in the attraction between Fe ions and negative carboxylate groups.  相似文献   

6.
Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed using colloid probe atomic force microscopy (AFM). Increasing the residence time of an uncoated or BSA-coated microsphere on a surface consistently increased the adhesion force measured during retraction of the colloid from the surface, demonstrating the important contribution of polymer rearrangement to increased adhesion force. Increasing the force applied on the colloid (loading force) also increased the adhesion force. For example, at a lower loading force of approximately 0.6 nN there was little adhesion (less than -0.47 nN) measured between a microsphere and the BSA surface for an exposure time up to 10 s. Increasing the loading force to 5.4 nN increased the adhesion force to -4.1 nN for an uncoated microsphere to a BSA surface and to as much as -7.5 nN for a BSA-coated microsphere to a BSA-coated glass surface for a residence time of 10 s. Adhesion forces between colloids and biopolymer surfaces decreased inversely with pH over a pH range of 4.5-10.6, suggesting that hydrogen bonding and a reduction of electrostatic repulsion were dominant mechanisms of adhesion in lower pH solutions. Larger adhesion forces were observed at low (1 mM) versus high ionic strength (100 mM), consistent with previous AFM findings. These results show the importance of polymers for colloid adhesion to surfaces by demonstrating that adhesion forces increase with applied force and detention time, and that changes in the adhesion forces reflect changes in solution chemistry.  相似文献   

7.
The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and without (IB03987) antigen I/II through atomic force microscopy (AFM) and to relate these interaction forces with the adhesion of the strains to saliva-coated glass in a parallel plate flow chamber. Upon approach of the bacteria toward a saliva-coated AFM tip, both strains experienced a similar repulsive force that was significantly smaller at pH 6.8 (median 3.0 and 3.1 nN for LT11 and IB03987, respectively) than at pH 5.8 (median 4.6 and 4.7 nN). The decay length of these repulsive forces was between 19 and 37 nm. Upon retraction at pH 6.8, the combined specific and nonspecific adhesion forces were significantly stronger for the parent strain LT11 (median -0.4 nN) than for the mutant strain IB03987 (median 0.0 nN), whereas at pH 5.8 the median of the adhesion forces measured was 0.0 nN for both strains. Moreover, at pH 6.8, the parent strain LT11 adhered in significantly higher numbers (9.6 x 106 cm-2) to a salivary coating than the mutant strain IB03987 (2.5 x 106 cm-2). Similar to the difference in adhesion forces between both strains at pH 5.8, the difference in adhesion between both strains also disappeared at pH 5.8, which suggests the involvement of attractive electrostatic forces in the interaction between antigen I/II and salivary coatings. In summary, this study shows that antigen I/II at the surface of S. mutans LT11 is responsible for its increased adhesion to salivary coatings under flow through an additional attractive electrostatic force.  相似文献   

8.
Atomic force microscopy (AFM) was used to quantify the adhesion forces between Pseudomonas aeruginosa PAO1 and AK1401, and a representative model protein, bovine serum albumin (BSA). The two bacteria strains differ in terms of the structure of their lipopolysaccharide (LPS) layers. While PAO1 is the wild-type expressing a complete LPS and two types of saccharide units in the O-antigen (A(+) B(+)), the mutant AK1401 expresses only a single unit of the A-band saccharide (A(+) B(-)). The mean adhesion force (F(adh)) between BSA and AK1401 was 1.12 nN, compared to 0.40 nN for F(adh) between BSA and PAO1. In order to better understand the fundamental forces that would control bacterial-protein interactions at equilibrium conditions, we calculated interfacial free energies using the van Oss-Chaudhury-Good (VCG) thermodynamic modeling approach. The hydrogen bond strength was also calculated using a Poisson statistical analysis. AK1401 has a higher ability to participate in hydrogen bonding with BSA than does PAO1, which may be because the short A-band and absence of B-band polymer allowed the core oligosaccharides and lipid A regions to be more exposed and to participate in hydrogen and chemical bonding. Interactions between PAO1 and BSA were weak due to the dominance of neutral and hydrophilic sugars of the A-band polymer. These results show that bacterial interactions with protein-coated surfaces will depend on the types of bonds that can form between bacterial surface macromolecules and the protein. We suggest that strategies to prevent bacterial colonization of biomaterials can focus on inhibiting these bonds.  相似文献   

9.
Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface hydrophobicity on initial adhesion forces for the four different S. epidermidis strains was observed. Over time, strengthening of the adhesion forces was virtually absent on hydrophobic dimethyldichlorosilane (DDS)-coated glass, although in a few cases multiple adhesion peaks developed in the retract curves. Bond-strengthening on hydrophilic glass occurred within 5-35 s to maximum adhesion forces of -1.9 +/- 0.7 nN and was concurrent with the development of multiple adhesion peaks upon retract. Poisson analysis of the multiple adhesion peaks allowed separation of contributions of hydrogen bonding from other nonspecific interaction forces and revealed a force contribution of -0.8 nN for hydrogen bonding and +0.3 nN for other nonspecific interaction forces. Time-dependent bacterial adhesion forces were comparable for all four staphylococcal strains. It is concluded that, on DDS-coated glass, the hydrophobic effect causes instantaneous adhesion, while strengthening of the bonds on hydrophilic glass is dominated by noninstantaneous hydrogen bond formation.  相似文献   

10.
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.  相似文献   

11.
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity.  相似文献   

12.
The S-layer present at the outermost cell surface of some lactobacillus species is known to convey hydrophobicity to the lactobacillus cell surface. Yet, it is commonly found that adhesion of lactobacilli to solid substrata does not proceed according to expectations based on cell surface hydrophobicity. In this paper, the role of cell surface hydrophobicity of two lactobacillus strains with and without a surface layer protein (SLP) layer has been investigated with regard to their adhesion to hydrophobically or hydrophilically functionalized glass surfaces under well-defined flow conditions and in low and high ionic strength suspensions. Similarly, the interaction of the lactobacilli with similarly functionalized atomic force microscope (AFM) tips was measured. In a low ionic strength suspension, both lactobacillus strains show higher initial deposition rates to hydrophobic glass than to hydrophilic glass, whereas in a high ionic strength suspension no clear influence of cell surface hydrophobicity on adhesion is observed. Independent of ionic strength, however, AFM detects stronger interaction forces when both bacteria and tip are hydrophobic or hydrophilic than when bacteria and tip have opposite hydrophobicities. This suggest that the interaction develops in a different way when a bacterium is forced into contact with the tip surface, like in AFM, as compared with contacts developing between a cell surface and a macroscopic substratum under flow. In addition, the distance dependence of the total Gibbs energy of interaction could only be qualitatively correlated with bacterial deposition and desorption in the parallel plate flow chamber.  相似文献   

13.
Bacterial adhesion to glass and metal-oxide surfaces   总被引:1,自引:0,他引:1  
Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was significantly (P < 10(-25)) correlated with total adhesion free energy (U) between the bacteria and surface (A = 2162e(-1.8U)).Although the correlation was significant, agreement between the model and data was poor for the low energy surfaces (R2 = 0.68), indicating that better models or additional methods to characterize bacteria and surfaces are still needed to more accurately describe initial bacterial adhesion to inorganic surfaces.  相似文献   

14.
Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the function of colloid residence time (T) and solution ionic strength (IS). For three of the proteins, OH-functionalized colloids produced higher adhesion forces to proteins (2.6-30.5 nN; IS=1 mM, T=10s) than COOH- and NH2-functionalized colloids (1.6-6.8 nN). However, protein A produced the largest adhesion force (8.1+/-1.0 nN, T=10 s) with the COOH-functionalized colloid, demonstrating the importance of specific and unanticipated protein-functional group interactions. The NH2-functionalized colloid typically produced the lowest adhesion forces with all proteins, likely due to repulsive electrostatic forces and weak bonds for NH2-NH2 interactions. The adhesion force (F) between functionalized colloids and proteins consistently increased with residence time (T), and data was well fitted by F=ATn. The constant value of n=0.21+/-0.07 for all combinations of proteins and functionalized colloids indicated that water exclusion and protein rearrangement were the primary factors affecting adhesion over time. Adhesion forces decreased inversely with IS for all functional groups interacting with surface proteins, consistent with previous findings. These results demonstrate the importance of specific molecular-scale interactions between functional groups and proteins that will help us to better understand factors colloidal adhesion to surfaces.  相似文献   

15.
The structure and physicochemical properties of microbial surfaces at the molecular level determine their adhesion to surfaces and interfaces. Here, we report the use of atomic force microscopy (AFM) to explore the morphology of soft, living cells in aqueous buffer, to map bacterial surface heterogeneities, and to directly correlate the results in the AFM force-distance curves to the macroscopic properties of the microbial surfaces. The surfaces of two bacterial species, Acinetobacter venetianus RAG-1 and Rhodococcus erythropolis 20S-E1-c, showing different macroscopic surface hydrophobicity were probed with chemically functionalized AFM tips, terminating in hydrophobic and hydrophilic groups. All force measurements were obtained in contact mode and made on a location of the bacterium selected from the alternating current mode image. AFM imaging revealed morphological details of the microbial-surface ultrastructures with about 20 nm resolution. The heterogeneous surface morphology was directly correlated with differences in adhesion forces as revealed by retraction force curves and also with the presence of external structures, either pili or capsules, as confirmed by transmission electron microscopy. The AFM force curves for both bacterial species showed differences in the interactions of extracellular structures with hydrophilic and hydrophobic tips. A. venetianus RAG-1 showed an irregular pattern with multiple adhesion peaks suggesting the presence of biopolymers with different lengths on its surface. R. erythropolis 20S-E1-c exhibited long-range attraction forces and single rupture events suggesting a more hydrophobic and smoother surface. The adhesion force measurements indicated a patchy surface distribution of interaction forces for both bacterial species, with the highest forces grouped at one pole of the cell for R. erythropolis 20S-E1-c and a random distribution of adhesion forces in the case of A. venetianus RAG-1. The magnitude of the adhesion forces was proportional to the three-phase contact angle between hexadecane and water on the bacterial surfaces.  相似文献   

16.
Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal–insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull‐off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.  相似文献   

17.
Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer.  相似文献   

18.
This article presents a study on the influence of the protocol used for immobilization of bacterial cells onto surfaces by mechanically trapping them into a filter. In this sense, the surface and structure of trapped cells are analyzed. Bacteria can be present solely or with extracellular polymeric substances (EPS). To test the behavior of the EPS layer duing the filtering process, different strains of a well-known EPS-producer bacteria (Staphylococcus epidermidis), which produce an extracellular matrix clearly visible in AFM images, have been used. Results show that this immobilization method can cause severe structural and mechanical deformation to the cell membrane. This altered mechanical state may possibly influence the parameters derived from AFM force curves (which are micro/nano-mechanical tests). Also, our results suggest that the EPS layer might move during the filtering process and could accumulate at the upper part of the cell, thus favoring distorted data of adhesion/pull-off forces as measured by an AFM tip, especially in the case of submicron-sized microbial cells such as bacteria.  相似文献   

19.
Atomic force microscopy (AFM) was used to measure adhesion forces between E. coli bacteria and surfaces consisting of a series of polyamides and polystyrene, materials that are prominent in carpeting, upholstery, and other indoor surfaces. Bioparticle adhesion to such surfaces in air is poorly understood, yet these interactions are thought to play a key role in their accumulation and release as indoor air pollutants. The polymers employed were polyamide 6 (PA6), polyamide 6,6 (PA66), polyamide 12 (PA12) and polystyrene (PS). We report the interaction forces between immobilized E. coli and AFM tips coated with each polymer. The adhesion forces for the tip-bacterial interactions were in the range between 2.9 and 6.7 nN, which is of the same magnitude as the polymer-polymer interactions for the same series of polymers. Polystyrene had stronger adhesion with E. coli than any of the three polyamides, by an average factor of 1.4. The work of adhesion and Hamaker constants of the probe-surface interactions were calculated using a square-pyramid flat-surface model developed previously. A drag-force analysis suggests that model spheres with the same adhesion force as E. coli-poly(amide) (F approximately 4 nN) will remain adherent under normal foot traffic (F approximately 0.2 nN), but will release during vacuum cleaning (F>or=30 nN).  相似文献   

20.
To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号