首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For increasing the sensitivity of label-free DNA assays an amplification strategy is proposed based on the synthesis of a proflavine derivative which on the one hand retains its high affinity for double-stranded DNA (dsDNA) intercalation and on the other hand is functionalized via a flexible spacer with biotin moieties. By this, subsequent to the post-labeling of areas with dsDNA, reporter systems such as streptavidin/enzyme conjugates can be bound. Amplified DNA hybridization detection using an oligonucleotide model system, a biotinylated proflavine as intercalator and streptavidin/alkaline phosphatase is demonstrated.  相似文献   

2.
制备了一种能固载目标蛋白质, 却没有非特异性蛋白质吸附的高分子涂层. 该涂层是可生物降解的油水两亲性的三嵌段聚合物, 即生物素偶联的聚乙二醇-聚丙交酯-聚赖氨酸共聚物. 将高分子溶解于N,N-二甲基甲酰胺中, 并涂布在预先包被了聚赖氨酸的脱脂玻片基质上, 形成高分子涂层, 在其表面包被一层由明胶和聚N-乙烯基吡咯烷酮组成的封闭剂. 使用酶标免疫分析法, 对高分子涂层表面的生物活性进行评价. 依次将辣根过氧化物酶标记的链亲和素和生物素偶联的小鼠球蛋白抗原和碱性磷酸酯酶标记的马抗小鼠抗体固载在高分子涂层表面上, 通过标记酶与底物作用生色. 分析结果表明, 经过封闭以后, 生物素化的高分子涂层表面能够排斥非特异性的蛋白质; 同时特异性蛋白质之间(如生物素和链亲和素之间、抗原和抗体之间)的相互作用依然保留, 并且固定在表面的蛋白质依然保留其生物活性. 因此生物素化的聚乙二醇-聚丙交酯-聚赖氨酸三嵌段高分子可以作为生物活性材料, 用于蛋白质固载和蛋白质分离及分析.  相似文献   

3.
Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag–BirA system. Through the high streptavidin (SA)–biotin interaction, the divalent biotinylated APs were clustered in the SA–biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ–AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable for the ZZ protein.  相似文献   

4.
The amplified detection of a target DNA, based on the alkaline phosphatase oxidative hydrolysis of the soluble 5-bromo-4-chloro-3-indoyl phosphate to the insoluble indigo product as an amplification path, is addressed by two different sensing configurations. The accumulation of the insoluble product on Au electrodes or Au/quartz crystals alters the interfacial electron-transfer resistance at the Au electrode or the mass associated with the piezoelectric crystal, thus enabling the quantitative transduction of the DNA sensing by Faradaic impedance spectroscopy or microgravimetric quartz crystal microbalance measurements, respectively. One sensing configuration involves the association of a complex consisting of the target DNA and a biotinylated oligonucleotide to the functionalized transducers. The binding of the avidin/alkaline phosphatase conjugate to the sensing interface followed by the biocatalyzed precipitation provides the amplification path for the analysis of the target DNA. This analysis scheme was used to sense the target DNA with a sensitivity limit that corresponds to 5 x 10(-14) M. The second amplified detection scheme involves the use of a nucleic-acid-functionalized alkaline phosphatase as a biocatalytic conjugate for the precipitation of the insoluble product. Following this scheme, the functionalized transducers are interacted with the analyzed sample that was pretreated with the oligonucleotide-modified alkaline phosphatase, followed by the biocatalyzed precipitation as the amplification route for the analysis of the target DNA. By the use of this configuration, a detection limit corresponding to 5 x 10(-13) M was achieved. Real clinical samples of the Tay-Sachs genetic disorder were easily analyzed by the developed detection routes.  相似文献   

5.
A novel dual electrochemical immunosensor for the multiplexed determination of adrenocorticotropin (ACTH) and cortisol is reported. Aminophenylboronic acid‐modified dual screen‐printed carbon electrodes were prepared on which the corresponding ACTH and cortisol antibodies were immobilized. Competitive immunoassays involved biotinylated ACTH and alkaline phosphatase labelled streptavidin, or alkaline phosphatase labelled cortisol. Differential pulse voltammetry upon 1‐naphtyl phosphate addition was employed to monitor the affinity reactions. The ranges of linearity were 5.0×10?5?0.1 and 0.1?500 ng/mL for ACTH and cortisol. The usefulness of the dual immunosensor was demonstrated by analyzing certified human serum samples with good recoveries.  相似文献   

6.
Commercial preparations of streptavidin, a bacterial biotin-binding protein, were analyzed by isoelectric focusing combined with an affinity-based protein blot using biotinylated, protein-saturated nitrocellulose. The colorimetrical detection of streptavidin with biotinylated alkaline phosphatase allows the selective visualization of streptavidin molecules with at least two active biotin-binding sites. Dependent on the preparation, seven to sixteen streptavidin forms were found with isoelectric points ranging from 5 to 8. Molecular weight analysis of the subunits of streptavidin showed that the observed heterogeneity was mainly due to limited proteolysis, which does not destroy the biotin-binding activity. The preparations differed also in the nonspecific reactivity of streptavidin with single-stranded DNA, bovine serum albumin and Tween 20. No relationship was observed between heterogeneity and non-specific binding activity. Data obtained from protein blots onto nitrocellulose saturated with single-stranded DNA showed that it cannot be excluded that streptavidin with only a single active biotin-binding site is mainly responsible for the nonspecific reactivity of some streptavidin preparations.  相似文献   

7.
Exploiting self-assembly systems with biological building blocks is of significant interest in the fabrication of advanced biomaterials. We assessed the potential use of site-specific ligand labeling of protein building blocks in designing functional protein self-assemblies by combining site-specifically biotinylated bacterial alkaline phosphatase (as a bidentate or tetradentate ligand unit) and streptavidin (as a tetrameric receptor).  相似文献   

8.
MicroRNAs (miRNAs, miRs) are naturally occurring small RNAs (approximately 22 nucleotides in length) that have critical functions in a variety of biological processes, including tumorigenesis. They are an important target for detection technology for future medical diagnostics. In this paper we report an electrochemical method for miRNA detection based on paramagnetic beads and enzyme amplification. In particular, miR 222 was chosen as model sequence, because of its involvement in brain, lung, and liver cancers. The proposed bioassay is based on biotinylated DNA capture probes immobilized on streptavidin-coated paramagnetic beads. Total RNA was extracted from the cell sample, enriched for small RNA, biotinylated, and then hybridized with the capture probe on the beads. The beads were then incubated with streptavidin–alkaline phosphatase and exposed to the appropriate enzymatic substrate. The product of the enzymatic reaction was electrochemically monitored. The assay was finally tested with a compact microfluidic device which enables multiplexed analysis of eight different samples with a detection limit of 7 pmol L?1 and RSD?=?15 %. RNA samples from non-small-cell lung cancer and glioblastoma cell lines were also analyzed.  相似文献   

9.
An electrochemical immunosensor for ghrelin (GHRL) determination in saliva is reported. Anti‐GHRL was immobilized onto Protein G‐magnetic beads and a competitive immunoassay involving biotinylated GHRL and alkaline phosphatase‐streptavidin was implemented. Once conjugate was magnetically captured on a screen‐printed carbon electrode, GHRL quantization was accomplished by DPV of 1‐naphtol formed upon addition of 1‐naphtyl phosphate. A linear range between 10?3 and 103 ng/mL GHRL, and a LOD of 7 pg/mL, much smaller than those from commercial ELISA kits, were found. The usefulness of the immunosensor was demonstrated by analyzing human saliva spiked with GHRL at 0.01, 0.1, 1 and 10 ng/mL.  相似文献   

10.
The determination of proteins with enzyme-amplified biochemical detection (EA-BCD) coupled on-line with high-performance liquid chromatography (HPLC) is demonstrated. The EA-BCD system was developed to detect biotin-containing compounds. Hemoglobin, which was used as a model compound, was biotinylated prior to sample introduction. Several biotinylation parameters, such as pH and removal of excess biotinylation reagent, were investigated. After biotinylation samples were introduced to HPLC followed by EA-BCD. To the HPLC effluent, alkaline phosphatase label streptavidin (S-AP) was added, which possesses high affinity to biotin and biotin-containing compounds. Excess S-AP was removed by means of an immobilized biotin column followed by substrate addition. The non-fluorescent substrate is converted to a highly fluorescent product by the enzyme label. A detection limit of 2 femtomol biotinylated Hb was achieved with good reproducibility and linearity. However, biotinylation at low analyte concentration suffers from low yield due to slow reaction kinetics. Finally, Hb was successfully extracted from urine with a recovery of 94%.  相似文献   

11.
We report on an electrochemical method for the determination of the activity of the enzyme methyltransferase (MTase). The methyl-binding domain-1 protein was applied to recognize symmetrically methylated cytosine in CpG (-C-phosphate-G-) islands of ds-DNA which then specifically bind to anti-His tag antibody. Hyperbranched rolling circle amplification (RCA) was used to improve sensitivity. When the dsDNA was treated with M.Sss I methyltransferase, the sequence 5′-CCGG-3′ was methylated and recognized by the methyl binding protein. In turn, the anti-His tag, biotinylated IgG, streptavidin and biotinylated oligonucleotide were captured successively on the surface of an electrode. Subsequently, the RCA reaction was initiated and streptavidin-labeled alkaline phosphatase immobilized on the surface of the electrode. ALP was able to catalyze the hydrolysis of 1-naphthyl phosphate to form 1-naphthol at pH 9.8. The oxidation peak current of 1-naphthol was used to monitor the methylation process. The response obtained by differential pulse voltammetry was linearly related to the concentration of M.Sss I MTase in the range from 0.1 to 40 unit mL?1, and the detection limit was 0.03 unit mL?1 (at an SNR of 3). The inhibitory action of paclitaxel on the activity of M.Sss I MTase also was investigated.
Figure
An electrochemical immunosensing method is described for the detection of DNA methylation, assaying DNA methyltransferase activity by combining the rolling circle amplification technique.  相似文献   

12.
Advances in nanotechnology have had significant impacts in the field of biodiagnostics. In this study, we describe the novel application of dissolvable, organic and biofunctional nanocrystals for the quantitative detection of a PCR product. Fluorescein diacetate (FDA), a fluorogenic precursor of fluorescein, was milled in a solution of a polymeric surfactant to create a stable, nanosized colloid with an interface for coupling streptavidin molecules. The application of these particulate labels for the quantitative detection of biotinylated human papillomavirus (HPV) DNA, amplified in a standard PCR procedure, was demonstrated. After the affinity reaction, the FDA molecules were dissolved and concomitantly converted into fluorescein. This approach resulted in a high selectivity, short incubation times and a sensitivity up to 147 times greater than obtained from state-of-the-art, directly fluorescent-labeled streptavidins. This innovative method offers rapid detection of small amounts of nucleic acids because less target material and thus fewer PCR cycles are required.  相似文献   

13.
We report here a novel strategy for the high-sensitive detection of target biomolecules with very low concentrations on a quartz crystal microbalance (QCM) device using gold nanoparticles as signal enhancement probes. By employing a streptavidin-biotin interaction as a model system, we could prepare biotin-conjugated gold nanoparticles maintaining good dispersion and long-term stability by controlling the biotin density on the surface of gold nanoparticles that have been investigated by UV-vis spectra and AFM images. These results showed that 10 microM N-(6-[biotinamido]hexyl)-3'-(2'-pyridyldithio)propionamide (biotin-HPDP) was the critical concentration to prevent the nonspecific aggregation of gold nanoparticles in this system. For sensing streptavidin target molecules by QCM, biotinylated BSA was absorbed on the Au surface of the QCM electrode and subsequent coupling of the target streptavidin to the biotin in the sensing interface followed. Amplification of the sensing process was performed by the interaction of the target streptavidin on the sensing surface with gold nanoparticles modified with 10 microM biotin-HPDP. The biotinylated gold nanoparticles were used as signal amplification probes to improve the detection limit, which was 50 ng/ml, of the streptavidin detection system without signal enhancement, and the calibration curve determined for the net frequency changes showed good linearity over a wide range from 1 ng/ml to 10 microg/ml for the quantitative streptavidin target molecule analysis. In addition, the measured dissipation changes suggested that the layer of biotin-BSA adsorbed on the Au electrode and the streptavidin layer assembled on the biotin-BSA surface were highly compact and rigid. On the other hand, the structure formed by the biotinylated gold nanoparticles on the streptavidin layer was flexible and dissipative, being elongated outward from the sensing surface.  相似文献   

14.
A comparative evaluation of an electrochemical sandwich genoassay for pathogenic bacteria based on immobilized hairpin DNA probes and three different enzyme labels (horseradish peroxidase, alkaline phosphatase and a biomimetic peroxidase‐like DNAzyme) is reported. The natural enzymes were used as streptavidin conjugates, coupled to the surface duplex by using a biotin‐labeled signaling probe, whereas the DNAzyme was directly incorporated to the sequence of the signaling probe. HRP provides enhanced sensitivity although the choice of a catalytic reporter DNA sequence could simplify the assay.  相似文献   

15.
The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG2-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm−2 streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer sensors to realize a real-time measurement of streptavidin binding validating the functionality of the MZI biosensor. Subsequently, this streptavidin surface was employed to immobilize biotinylated single-stranded DNA and utilized for monitoring of selective DNA hybridization. These proved the usability of polyimide based evanescent photonic devices for biosensing application.  相似文献   

16.
An ultrasensitive multiplexed immunoassay method was developed by using streptavidin/nanogold/carbon nanohorn (SA/Au/CNH) as a novel signal tag to induce silver enhancement for signal amplification. The Au/CNH was prepared by in situ growth of nanogold on carboxylated CNH and functionalized with streptavidin. The SA/Au/CNH showed well dispersibility in physiological buffer and could sever as a common tracing tag to recognize biotinylated signal antibody. The immunosensor array was prepared on disposable screen-printed electrodes. Through sandwich-type immunoreaction and biotin-streptavidin affinity reaction, the SA/Au/CNH tag was captured on the immunoconjugates to induce silver deposition and amplify the electrochemical stripping signals. Using α-fetoprotein and carcinoembryonic antigen as model analytes, the proposed method showed wide linear ranges with the detection limits down to 0.024 pg mL−1 and 0.032 pg mL−1, respectively, and eliminated completely signal cross-talk between adjacent immunosensors. It provided a convenient, high-efficient and ultrasensitive electrochemical detection route for biological analytes, showing great potential in clinical application.  相似文献   

17.
We have developed a sensitive assay for enteropathogenic E. coli (EPEC) by integrating DNA extraction, specific polymerase chain reaction (PCR) and DNA detection using an electrode modified with the bundle-forming pilus (bfpA) structural gene. The PCR amplified products are captured on the electrode and hybridized with biotinylated detection probes to form a sandwich hybrid containing two biotinylated detection probes. The sandwich hybridization structure significantly combined the numerous streptavidin alkaline phosphatase on the electrode by biotin-streptavidin connectors. Electrochemical readout is based on dual signal amplification by both the sandwich hybridization structure and the enzyme. The electrode can satisfactorily discriminate complementary and mismatched oligonucleotides. Under optimal conditions, synthetic target DNA can be detected in the 1 pM to 10 nM concentration range, with a detection limit of 0.3 pM. EPEC can be quantified in the 10 to 107 CFU mL?1 levels within 3.5 h. The method also is believed to present a powerful platform for the screening of pathogenic microorganisms in clinical diagnostics, food safety and environmental monitoring.
An electrochemical DNA sensor was first designed to detect a bfpA gene specifically related to the EPEC.  相似文献   

18.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   

19.
In the present work, a convenient microarray SNP typing system has been developed using a plastic base that covalently immobilizes amino-modified oligonucleotides. Reliable SNP allele discrimination was achieved by using allelic specificity-enhanced enzymatic extension of immobilized oligonucleotide primer, with a locked nucleic acid (LNA) modification at the SNP-discriminating 3'-end nucleotide. Incorporation of multiple biotin-dUTP molecules during primer extension, followed by binding of alkaline phosphatase-conjugated streptavidin, allowed optical detection of the genotyping results through precipitation of colored alkaline phosphatase substrates onto the surface of the plastic base. Notably, rapid primer extension was demonstrated without a preliminary annealing step of double-stranded template DNA, allowing overall processes to be performed within a couple of hours. Simultaneous evaluation of three SNPs in the genes TGFB1, SOD2 and APEX1, previously investigated for association with radiation sensitivity, in 25 individuals has shown perfect assignment with data obtained by another established technique (MassARRAY system).  相似文献   

20.
Three different methods for the amplified detection of a single-base mismatch in DNA are described using microgravimetric quartz-crystal-microbalance as transduction means. All methods involve the primary incorporation of a biotinylated base complementary to the mutation site in the analyzed double-stranded primer/DNA assembly. The double-stranded assembly is formed between 25 complementary bases of the probe DNA assembled on the Au-quartz crystal and the target DNA. One method of amplification includes the association of avidin- and biotin-labeled liposomes to the sensing interface. The second method of amplified detection of the base mismatch includes the association of an Au-nanoparticle-avidin conjugate to the sensing interface, and the secondary Au-nanoparticle-catalyzed deposition of gold on the particles. The third amplification route includes the binding of the avidin-alkaline phosphatase biocatalytic conjugate to the double-stranded surface followed by the oxidative hydrolysis of 5-bromo-4-chloro-3-indolyl phosphate to the insoluble product indigo derivative that precipitates on the transducer. Comparison of the three amplification routes reveals that the catalytic deposition of gold on the Au-nanoparticle/avidin conjugate is the most sensitive method, and the single-base mismatch in the analyzed DNA is detected with a sensitivity that corresponds to 3x10(-16) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号