首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Triplet state properties including transient triplet absorption spectrum, intersystem crossing yields in solution at room temperature and phosphorescence spectra, quantum yields and lifetimes at low temperature as well as singlet oxygen yields were obtained for poly(N-vinylcarbazole) (PVK) in 2-methyl-tetrahydrofuran (2-MeTHF), cyclohexane or benzene. The results allow the determination of the energy value for the lowest lying triplet state and also show that triplet formation and deactivation is a minor route for relaxation of the lowest excited singlet state of PVK. In addition, they show the triplet state is at higher energy than reported heavy metal dopants used for electrophosphorescent devices, such that if this is used as a host it will not quench their luminescence.  相似文献   

2.
Abstract— The coenzyme ubiquinone, an isoprenoid benzoquinone present in the electron-transport chain of mitochondria, has been studied using nanosecond laser flash photolysis and pulse radiolysis. The hitherto undetected triplet excited state of the coenzyme has been identified and some of the physico-chemical properties determined. These measurements may assist the understanding in molecular terms of the degradative action of light upon biological materials, photophosphorylation and the possible initiation of biological electron transport via quinone light absorption. Laser photolysis of ubiquinone in cyclohexane and pulse radiolysis of ubiquinone in benzene results in the formation of a transient absorption with maximum around 440 nm and a half-life of 650 nsec in cyclohexane and 450 nsec in benzene. Energy transfer sensitisation of the β-carotene triplet absorption by ubiquinone in cyclohexane at a rate consistent with the life-time of the 440 nm transient absorption, yields strong evidence that this transient species is triplet ubiquinone. The triplet reacts with oxygen with a rate constant of 2 × 10--9 mole-1 sec-1. Photolysis studies of ubiquinone in ethanol and isopropanol and addition of ethanol to ubiquinone in cyclohexane show that little ubisemiquinone is formed by reaction of the triplet with alcohols. Electron spin resonance studies support this conclusion, and also show that some ubisemiquinone is however formed on photolysis of solutions of ubiquinone in methylcyclohexane. Energy transfer experiments in the presence of various triplet energy donors and acceptors suggest that the triplet energy of ubiquinone lies between 176 and 123 W mole-1, and that the triplet extinction coefficient at 440 nrn is 19 ,000 mole-1 cm-1 in cyclohexane and 13 ,000 mole-1 cm-1 in benzene (at 430 nm). The singlet to triplet crossover efficiency for ubiquinone in cyclohexane was estimated to be 0.04. The low triplet energy level, crossover efficiency and abnormal type of reaction with alcohols are reflections of the profound influence of the isoprenoid chain upon excited states of this quinone.  相似文献   

3.
During the maturation of red wines, the anthocyanins of grapes are transformed into pyranoanthocyanins, which possess a pyranoflavylium cation as their basic chromophore. Photophysical properties of the singlet and triplet excited states of a series of synthetic pyranoflavylium cations were determined at room temperature in acetonitrile solution acidified with 0.10 mol dm?3 trifluoroacetic acid (TFA, to inhibit competitive excited state proton transfer) and at 77 K in a rigid TFA‐acidified isopropanol glass. In solution, the triplet states of these pyranoflavylium cations are efficiently quenched by molecular oxygen, resulting in sensitized formation of singlet oxygen, as confirmed by direct detection of the triplet‐state decay by laser flash photolysis and of singlet oxygen monomol emission in the near infrared. The strong visible light absorption, the relatively small singlet‐triplet energy differences, the excited state redox potentials and the reasonably long lifetimes of pyranoflavylium triplet states in the absence of molecular oxygen suggest that they might be useful as triplet sensitizers and/or as cationic redox initiators in polar aprotic solvents like acetonitrile.  相似文献   

4.
Donor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade. Using femtosecond transient spectroscopy, the rate of the singlet-singlet energy transfer was determined. The exponential dependence of the donor-acceptor distance and the respective energy transfer rates of 7.1 x 1010 to 1.0 x 109 s-1 with the attenuation factor a of 0.21 +/- 0.02 A-1 suggest that the energy transfer proceeds via a mixed incohererent wire/superexchange mechanism. In the OLEDs fabricated using the Alq3-oligofluorene-PtTPP triads with better triplet level alignment, the order of a magnitude increase in efficacy appears to be due to facile triplet energy transfer. The devices, where the triplet-triplet energy transfer is of paramount importance, showed high color purity emission (CIE X,Y: 0.706, 0.277), which is almost identical to the emission from thin films. Most importantly, we believe that the design principles demonstrated above are general and may be used to prepare OLED materials with enhanced quantum efficacy at lowered operational potentials, being crucial for improved lifespan of OLEDs.  相似文献   

5.
The triplet state of ergosterol (provitamin D2) has been produced in benzene by pulse radiolysis and characterised in terms of absorption spectrum, lifetime, self-quenching properties and relaxed triplet energy. The amount of singlet oxygen, O2(1Δg), produced as a consequence of the oxygen quenching of this species has been determined by kinetic infrared emission spectroscopy. Ergosterol is significantly more efficient as a singlet oxygen sensitiser in benzene than is naphthalene, the absolute standard employed in this work.  相似文献   

6.
Laser photolysis techniques have been employed show that the quenching of the excited electronic states of 9,10-di-phenylanthracene involve an energy transfer mechanism resulting in generation of singlet oxygen from both the lowest singlet and triplet states of the hydrocarbon. Internal conversion from the excited singlet of the 9,10-diphenylanthracene is enhanced by oxygen as well. This process is attributed to formation of sterically hindered conformers. The temperature dependence of internal conversion of 9,10-diphenylanthracene was also examined.  相似文献   

7.
The triplet state of pyrromethene 567, a molecule with potential as a solid state laser dye, has been characterized in benzene by pulse radiolysis in terms of its absorption spectrum, lifetime, self-quenching, electronic excitation energy, triplet–triplet extinction coefficient and oxygen quenching rate constant. The use of laser flash photolysis has then allowed determination of the triplet quantum yield, efficiency of formation of singlet oxygen (1Δg), and the rate constant for reaction of the latter species with the ground state. The affects of oxygen on the fluorescence and triplet yields demonstrate that oxygen-induced intersystem crossing is important, the sum of these parameters being unity within experimental error. The mechanism of reaction of P-567 with 1Δg in benzene is predominantly physical in character with only a small (6%) contribution from chemical reaction.  相似文献   

8.
The efficiency of aromatic ketones as singlet-oxygen (1O2(1Δg)) sensitizers can vary considerably with the electronic configuration of their lowest triplet state and the solvent used. Near-infrared measurements of tie luminescence of singlet oxygen have shown that the quantum yield of singlet-oxygen production (ΦΔ) by 1H-phenalen-1-one ( 1 ) is close to unity in both polar (ΦΔ = 0.97±0.03 in methanol) and non-polar solvents (ΦΔ = 0.93±0.04 in benzene). Analysis of the absorption spectra of the ground state and phosphorescence measurements show that the lowest singlet and triplet states have dominant π, π* electronic configurations. The quantum yield of intersystem crossing (ΦISC) of 1 , determined by laser flash photolysis (partial-saturation method), is equal to unity. In comparison with other aromatic ketones, these parameters are important for the discussion of the surprisingly high ΦISC of 1 and the efficient energy transfer from its triplet state to molecular oxygen. The 1H-phenalen-1-one ( 1 ), being one of the most efficient singlet-oxygen sensitizers in both polar and non-polar media, could be used as a reference sensitizer, in particular in the area of relatively high energies of excitation.  相似文献   

9.
Photophysical properties in dilute acetonitrile solution are reported for a number of iridium(III) and rhenium(I) complexes. The nature of the lowest excited state of the complexes under investigation is either metal-to-ligand charge transfer ((3)MLCT) or a ligand centred ((3)LC) state. Rate constants, k(q), for quenching of the lowest excited states by molecular oxygen are in the range 1.5 x 10(8) to 1.4 x 10(10) M(-1) s(-1). Efficiency of singlet oxygen production, f(Delta)(T), following oxygen quenching of the lowest excited states of these complexes, are in the range of 0.27-1.00. The rate constants and the efficiency of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition between a non-charge transfer (nCT) and a CT deactivation channel. The balance between CT and nCT deactivation channels, which is described by the relative contribution p(CT) of CT induced deactivation, is discussed. The kinetic model is found to be successfully applied in the case of quenching of the excited triplet states of coordination compounds by oxygen in acetonitrile, as was proposed for the quenching of pi-pi* triplet states by oxygen.  相似文献   

10.
Abstract The results of a nanosecond laser flash photolysis investigation of the UVA sunscreen Mexoryl* SX in various solvent environments and within a commercial sunscreen formulation are reported. To the best of our knowledge this is the first laser flash photolysis study of a commercial suncare formulation. In each of these environments kinetic UV-visible absorption measurements following nanosecond 355 nm laser excitation reveals a short-lived species with a solvent-dependent absorption maximum around 470–500 nm and a solvent-dependent lifetime of 50–120 ns. This transient absorption is attributed to the triplet state of Mexoryl* SX on the basis that it is quenched by molecular oxygen leading to the formation of singlet oxygen in acetonitrile. The singlet oxygen quantum yield (φΔ), determined by comparative time-resolved near-infrared luminescence measurements and extrapolated to the limit of complete triplet state quenching, is estimated as 0.09 ± 0.03 in acetonitrile. In aqueous solution the shorter triplet state lifetime combined with lower ambient oxygen concentrations precludes significant triplet state quenching. For the commercial sunscreen formulation there was no observable difference in the measured triplet lifetime between samples exposed to oxygen or argon, suggesting that the singlet oxygen quantum yield in such environments is likely to be orders of magnitude lower than that measured in acetonitrile.  相似文献   

11.
Ultrafast photolysis of 9-diazofluorene (DAF) produces a broadly absorbing transient within the instrument time resolution (300 fs), which is assigned to an excited state of the diazo compound. The diazo excited state fragments to form fluorenylidene (Fl) in both its lowest energy singlet state (1Fl, 405-430 nm, depending on the solvent) and a higher energy singlet state (370 nm, 1Fl*). The excited singlet carbene has a lifetime of 20.9 ps in acetonitrile and decays to the lower energy singlet state (1Fl), which relaxes to the triplet ground state (3Fl) in acetonitrile, cyclohexane, benzene, and hexafluorobenzene. The equilibrium mixture of singlet and triplet fluorenylidene reacts with these solvents. Singlet fluorenylidene reacts with methanol and cyclohexene in competition with relaxation to 3Fl. One of the reaction products in methanol is the 9-fluorenyl cation. The rate of intersystem crossing (ISC) in hexafluorobenzene and other halogenated solvents is remarkably slow given that carbene ISC rates are generally fastest in nonpolar solvents. An explanation of this effect is advanced.  相似文献   

12.
Abstract— Triplet extinction coefficients and hence singlet → triplet intersystem crossing quantum yields have been measured in benzene for a number of linear furocoumarins including pseudopsoralen, 5, 8-dimethoxypsoralen, 4, 5', 8-trimethylpsoralen and 3-carbethoxypseudopsoralen. These triplet yields were then used in conjunction with the corresponding quantum yields of singlet oxygen formation, measured in oxygenated solution, to estimate the fractions of furocoumarin triplets which when quenched by ground state oxygen produce singlet excited oxygen, similar data being obtained for psoralen, 5-methoxypsoralen, 8-methoxypsoralen and 3-carbethoxypsoralen. The superoxide anion radical was not detected from these oxygen quenching reactions, nor was a contribution to the singlet oxygen yield found from furocoumarin excited singlet state quenching by oxygen. The fraction of furocoumarin-oxygen quenching interactions leading to singlet oxygen varied between 0.13 (for 5, 8-dimethoxypsoralen) and unity (for 3-carbethoxypsoralen), and thus needs to be taken into account, as well as the triplet quantum yields, in assessing photobiological processes involving singlet oxygen.  相似文献   

13.
Abstract— The mechanism of the photooxidative dephosphorylation of menadiol diphosphate appears to be invariant with respect to three sensitizers used; namely, riboflavin, biacetyl, and menadiol diphosphate itself. The mechanism involves triplet energy transfer from the sensitizers to oxygen to yield singlet oxygen which oxidizes menadiol diphosphate. The photolysis of menadiol diphosphate in acetic acid has resulted in formation of acetyl phosphate, as determined by paper chromatography. Therefore, we have demonstrated the feasibility of our model for converting light energy into chemical potential ('high-energy' phosphate bond energy or group transfer potential) in the form of acetyl phosphate.  相似文献   

14.
We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.  相似文献   

15.
The photophysical properties of the lowest excited triplet states of pyrido[3,4-c]psoralen (PyPs) and 7-methylpyrido[3,4-c]psoralen (MePyPs) have been investigated by laser flash photolysis, including energy transfer from these triplets to oxygen-generating singlet oxygen. A parallel study of the photosensitization of yeast in vivo by these compounds in the presence and absence of oxygen is also reported. The low triplet and hence singlet oxygen yields, reflected in the lack of an oxygen effect in yeast, suggest that photoadditions to DNA are likely to be the main source of the photosensitized lethal effects induced by these pyridopsoralens in vivo.  相似文献   

16.
Heteroleptic copper(I) complexes CuPOP-F and CuFc-F have been prepared from a fullerene-substituted phenanthroline ligand and bis[2-(diphenylphosphino)phenyl] ether (POP) and 1,1'-bis(diphenylphosphino)ferrocene (dppFc), respectively. Electrochemical studies indicate that some ground-state electronic interaction between the fullerene subunit and the metal-complexed moiety are present in both CuPOP-F and CuFc-F. Their photophysical properties have been investigated by steady state and time-resolved UV-vis-NIR luminescence spectroscopy and nanosecond laser flash photolysis in a CH2Cl2 solution and compared to those of the corresponding model copper(I) complexes CuPOP and CuFc and of the fullerene model compound F. Selective excitation of the methanofullerene moiety in CuPOP-F results in regular deactivation of the lowest singlet and triplet states, indicating no intercomponent interactions. Conversely, excitation of the copper(I)-complexed unit (405 nm, 40% selectivity) shows that the strongly luminescent triplet metal-to-ligand charge-transfer ((3)MLCT) excited state located at 2.40 eV is quenched by the carbon sphere with a rate constant of 1.6 x 10(8) s(-1). Details on the mechanism of photodynamic processes in CuPOP-F via transient absorption are hampered by the rather unfavorable partition of light excitation between the two chromophores. By determination of the yield of formation of the lowest fullerene triplet level through sensitized singlet oxygen luminescence in the NIR region, it is shown that the final sink of photoinduced processes is always the fullerene triplet. This can be populated via a two-step charge-separation charge-recombination process and a less favored (3)MLCT --> (3)C60 triplet-triplet energy-transfer pathway. In CuFc-F, both of the photoexcited copper(I)-complexed and fullerene moieties are quenched by the presence of the ferrocene unit, most likely via ultrafast energy transfer.  相似文献   

17.
Several important photophysical properties of the cyanine dye Cy3 have been determined by laser flash photolysis. The triplet-state absorption and photoisomerization of Cy3 are distinguished by using the heavy-atom effects and oxygen-induced triplet --> triplet energy transfer. Furthermore, the triplet-state extinction coefficient and quantum yield of Cy3 are also measured via triplet-triplet energy-transfer method and comparative actinometry, respectively. It is found that the triplet --> triplet (T1-->Tn) absorptions of trans-Cy3 largely overlap the ground-state absorption of cis-Cy3. Unlike what occurred in Cy5, we have not observed the triplet-state T1-->Tn absorption of cis-Cy3 and the phosphorescence from triplet state of cis-Cy3 following a singlet excitation (S0-S1) of trans-Cy3, indicating the absence of a lowest cis-triplet state as an isomerization intermediate upon excitation in Cy3. The detailed spectra of Cy3 reported in this paper could help us interpret the complicated photophysics of cyanine dyes.  相似文献   

18.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

19.
The quenching of excited triplet states of sufficient energy by O2 leads to O2(1sigma(g)+) and O2(1delta(g)) singlet oxygen and O2(3sigma(g)-) ground-state oxygen as well. The present work investigates the question whether in the absence of charge transfer (CT) interactions between triplet sensitizer and O2 the rate constants of formation of the three different O2 product states follow a generally valid energy gap law. For that purpose, lifetimes of the upper excited O2(1sigma(g)+) have been determined in a mixture of 7 vol % benzene in carbon tetrachloride, in chloroform, and in perdeuterated acetonitrile. They amount to 1.86, 1.40, and 0.58 ns, respectively. Furthermore, rate constants of O2(1sigma(g)+), O2(1delta(g)), and O2(3sigma(g)-) formation have been measured in these three solvents for five pi pi* triplet sensitizers with negligible CT interactions. The rate constants are independent of solvent polarity. After normalization for the multiplicity of the respective O2 product state, the rate constants follow a common dependence on the excess energies of the respective product channels. This empirical energy gap relation describes also quantitatively the rate constants of quenching of O2(1delta(g)) by 28 carotenoids. Therefore, it represents in the absence of CT interactions a generally valid energy gap law for the rate constants of electronic energy transfer to and from O2.  相似文献   

20.
The results of a comprehensive investigation of the photophysical properties of the sunscreen analogue, N-acetyl menthyl anthranilate (NAMA), in various solvent systems are reported. Luminescence studies reveal that this compound is fluorescent (Phi(f)=0.16+/-0.01) in toluene and has a solvent dependent emission maximum in the range 363-370 nm. Phosphorescence has also been detected in low temperature glasses with an emission maximum at 420 nm in EPA, and a lifetime of 1.3 s; the triplet energy was found to be 311+/-3 kJ mol(-1). Kinetic UV-visible absorption measurements revealed a transient species with absorption maxima at 450 nm and solvent dependent lifetimes of 120-240 micros which are attributed to the triplet state. The triplet state is efficiently quenched by oxygen, leading to the formation of singlet oxygen in all of the solvent systems studied. The singlet oxygen quantum yields (Phi(Delta)), determined by time-resolved near-infrared luminescence measurements, were in the range 0.19-0.21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号