首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of this article is to study the boundary layer of Navier-Stokes/Allen- Cahn system in a channel at small viscosity. We prove that there exists a boundary layer at the outlet (down-wind) of thickness n, where n is the kinematic viscosity. The convergence in L^2 of the solutions of the Navier-Stokes/Allen-Cahn equations to that of the Euler/Allen-Cahn equations at the vanishing viscosity was established. In two dimensional case we are able to derive the physically relevant uniform in space and time estimates, which is derived by the idea of better control on the tangential derivative and the use of an anisotropic Sobolve imbedding.  相似文献   

2.
This work investigates the solvability, regularity and vanishing viscosity limit of the 3D viscous magnetohydrodynamic system in a class of bounded domains with a slip boundary condition.  相似文献   

3.
4.
In this paper,we investigate the time-periodic solution to a coupled compressible Navier–Stokes/Allen–Cahn system which describes the motion of a mixture of two viscous compressible fluids with a time periodic external force in a periodic domain in R^N.The existence of the time-periodic solution to the system is established by using an approach of parabolic regularization and combining with the topology degree theory,and then the uniqueness of the period solution is obtained under some smallness and symmetry assumptions on the external force.  相似文献   

5.
In this paper, the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space R+×R2. The result shows that the solution of three dimensional incompressible steady Navier-Stokes equations converges to the solution of three dimensional incompressible steady Euler equations in Sobolev space as the viscosity coefficient going to zero. The method is based on a new weighted energy estimates and Nash-Moser itera...  相似文献   

6.
We revisit a result by Coron and Guerrero stating that the one-dimensional transport-diffusion equation
  相似文献   

7.
In this paper, we investigate the vanishing viscosity limit problem for the 3D incompressible magnetohydrodynamic (MHD) system in a general bounded smooth domain of R 3 with the generalized Navier slip boundary conditions. We also obtain rates of convergence of the solution of viscous MHD to the corresponding ideal MHD. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider the incompressible combined viscosity and magnetic diffusion magnetohydrodynamic system with Dirichlet boundary condition in a half space of . We establish the asymptotic expansions of this system by multiscale analysis and obtain the horizontal alone viscosity and magnetic diffusion magnetohydrodynamic equations and the boundary layer equations. And then we study the well‐posedness of the 2 equations. At last, we get the vanishing limit when the vertical viscosity and magnetic diffusion coefficient tends to zero.  相似文献   

9.
10.
In this paper, we study the zero dissipation limit problem for the one-dimensional compressible Navier-Stokes equations. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the Navier-Stokes equations which converge to the inviscid solution away from the contact discontinuity at a rate of as the heat-conductivity coefficient κ tends to zero, provided that the viscosity μ is of higher order than the heat-conductivity κ. Without loss of generality, we set μ≡0. Here we have no need to restrict the strength of the contact discontinuity to be small.  相似文献   

11.
We study high order convergence of vanishing viscosity approximation to scalar hyperbolic conservation laws in one space dimension. We prove that, under suitable assumptions, in the region where the solution is smooth, the viscous solution admits an expansion in powers of the viscosity parameter ε. This allows an extrapolation procedure that yields high order approximation to the non-viscous limit as ε→0. Furthermore, an integral across a shock also admits a power expansion of ε, which allows us to construct high order approximation to the location of the shock. Numerical experiments are presented to justify our theoretical findings.  相似文献   

12.
In this paper, we consider the inviscid limit for the periodic solutions to Navier–Stokes equation in the framework of Gevrey class. It is shown that the lifespan for the solutions to Navier–Stokes equation is independent of viscosity, and that the solutions of the Navier–Stokes equation converge to that of Euler equation in Gevrey class as the viscosity tends to zero. Moreover, the convergence rate in Gevrey class is presented. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The authors are concerned with the sharp interface limit for an incompressible Navier-Stokes and Allen-Cahn coupled system in this paper. When the thickness of the diffuse interfacial zone, which is parameterized by ε, goes to zero, they prove that a solution of the incompressible Navier-Stokes and Allen-Cahn coupled system converges to a solution of a sharp interface model in the L(L2) ∩ L2(H1) sense on a uniform time interval independent of the smal...  相似文献   

14.
In this paper, we study the initial boundary value problem for a cylindrical symmetry fluid–particle interaction system in three dimensions. The boundary layer phenomena is investigated when the shear viscosity μ=κρβ goes to zero. Furthermore, we establish the boundary layer thickness of the order O(κα) for more general initial data when 0<α<12 and give the optimal boundary-layer thickness for the system with more general initial data. As a byproduct, this work improves the corresponding results in Yao et al. (2011) for isentropic compressible Navier–Stokes equations where 0<α<14.  相似文献   

15.
The Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas with a small parameter are considered. Unlike the polytropic or barotropic gas cases, we find that firstly, as the parameter decreases to a certain critical number, the two-shock solution converges to a delta shock wave solution of the same system. Moreover, as the parameter goes to zero, that is, the pressure vanishes, the solution is nothing but the delta shock wave solution to the zero-pressure relativistic Euler system. Meanwhile, the two-rarefaction wave solution tends to the vacuum solution to the zero-pressure relativistic system, and the solution containing one rarefaction wave and one shock wave tends to the contact discontinuity solution to the zero-pressure relativistic system as pressure vanishes.  相似文献   

16.
In this paper, we investigate the vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier–Stokes equations with a slip boundary condition. We establish the local well‐posedness of the strong solutions for initial boundary value problems for such systems. Furthermore, the vanishing viscosity limit process is established, and a strong rate of convergence is obtained as the boundary of the domain is flat. In addition, it is needed to add some additional condition for density to match well the boundary condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The Navier-Stokes system for one-dimensional compressible fluids with density-dependent viscosities when the initial density connects to vacuum continuously is considered in the present paper. When the viscosity coefficient u is proportional to pθ with 0 〈 θ 〈 1, the global existence and the uniqueness of weak solutions are proved which improves the previous results in [Vong, S. W., Yang, T., Zhu, C. J.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum II. J. Differential Equations, 192(2), 475-501 (2003)]. Here p is the density. Moreover, a stabilization rate estimate for the density as t → +∞ for any θ 〉 0 is also given.  相似文献   

19.
In this paper we introduce a concept of “regulated function” v(t,x) of two variables, which reduces to the classical definition when v is independent of t. We then consider a scalar conservation law of the form ut+F(v(t,x),u)x=0, where F is smooth and v is a regulated function, possibly discontinuous w.r.t. both t and x. By adding a small viscosity, one obtains a well posed parabolic equation. As the viscous term goes to zero, the uniqueness of the vanishing viscosity limit is proved, relying on comparison estimates for solutions to the corresponding Hamilton–Jacobi equation.As an application, we obtain the existence and uniqueness of solutions for a class of 2×2 triangular systems of conservation laws with hyperbolic degeneracy.  相似文献   

20.
In this paper we study the asymptotic limiting behavior of the solutions to the initial boundary value problem for linearized one-dimensional compressible Navier-Stokes equations. We consider the characteristic boundary conditions, that is we assume that an eigenvalue of the associated inviscid Euler system vanishes uniformly on the boundary. The aim of this paper is to understand the evolution of the boundary layer, to construct the asymptotic ansatz which is uniformly valid up to the boundary, and to obtain rigorously the uniform convergence to the solution of the Euler equations without the weakness assumption on the boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号