首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the generation of spin squeezing via the hole burning of selected Dicke states out of an atomic coherent state prepared for a collection of N two-level atoms or ions. The atoms or ions of the atomic coherent state are not entangled, but the removal of one or more Dicke states generates entanglement, and spin squeezing occurs for some ranges of the relevant parameters. Spin squeezing in a collection of two-level atoms or ions is of importance for precision spectroscopy.  相似文献   

2.
《中国物理 B》2021,30(10):100311-100311
Spin squeezing is a fascinating manifestation of many-particle entanglement and one of the most promising quantum resources. In this paper, we propose a novel realization of a solid-state quantum spin squeezing by applying Si V centers embedded in a diamond waveguide with the help of a microwave field. The phenomena about the generation of spin squeezing are analyzed numerically in Markovian environments. Our analysis shows that spin squeezing can be generated with the microwave field's help under some realistic conditions, despite the presence of dephasing and mechanical damping.This solid-state spin squeezing based on Si V centers in diamonds might be applied to magnetometers, interferometry, and other precise measurements.  相似文献   

3.
There is a comm on sense view for atomic magnetometers that their spin-projection-noises(SPNs) are inversely proportional to (T_2)~(1/2), where (T_2)~(1/2) is the transverse relaxation time. We analyze the current atomic magnetometer types and give a counter-example of this common sense, which is the all-optical spin precession modulated threeaxis atomic magnetometer proposed by our group in 2015. Unlike the other atomic magnetometers, the SPN of this kind of atomic magnetometers is proportional to (T_2)~(1/2) due to the fact that the scale factor between P_x and B can be unrelated to the transverse relaxation time T_2. We demonstrate this irrelevance experimentally and analyze the SPN theoretically. Using short-pulse ultra-high power laser to fully polarize the atoms, the phenomenon that SPN decreases with T_2 may also be demonstrated experimentally and a new tool for researching SPN in atomic magnetometers may be realized.  相似文献   

4.
Zheng-An Wang 《中国物理 B》2022,31(4):40309-040309
We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the $x$ and $z$ directions and produces parameter estimation with precision beating the standard quantum limit. The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameter $\phi$ (to be estimated) assumed as uniformly distributed between 0 and $2\pi$ while fixed in each estimation. One estimation of $\phi$ can be produced with every two magnetic susceptibility data measured along the two axes respectively, which has an imprecision scaling $({1.43\pm0.02})/N^{0.687\pm0.003}$ with respect to the number $N$ of the atomic spins. The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.  相似文献   

5.
We consider the limitations due to noise (e.g., quantum projection noise and photon shot-noise) on the sensitivity of an idealized atomic magnetometer that utilizes spin squeezing induced by a continuous quantum nondemolition measurement. Such a magnetometer measures spin precession of N atomic spins by detecting optical rotation of far-detuned light. We show that for very short measurement times, the optimal sensitivity scales as N(-3/4); if strongly squeezed probe light is used, the Heisenberg limit of N-1 scaling can be achieved. However, if the measurement time exceeds tau(rel)/N(1/2) in the former case, or tau(rel)/N in the latter, where tau(rel) is the spin relaxation time, the scaling becomes N(-1/2), as for a standard shot-noise-limited magnetometer.  相似文献   

6.
We investigate spin squeezing and quantum Fisher information in the Lipkin-Meshkov-Glick model. Approximate analytical expressions and the numerical analysis of spin squeezing and quantum Fisher information are derived. Spin squeezing and quantum Fisher information depend on the strength of the external transverse magnetic field and the anisotropic parameter  相似文献   

7.
邵辉丽  李栋  闫雪  陈丽清  袁春华 《物理学报》2014,63(1):14202-014202
拉曼散射过程中利用原子系综中初始制备的自旋激发(原子相干性),以及注入与原子系综中初始制备的自旋激发相关联的种子光场都可以极大的提高光场频率转换的效率,实现增强拉曼散射.本文理论上计算了增强拉曼散射过程中原子-光场量子界面的正交分量的量子起伏,得到了相干性导致的增强拉曼散射,只能在一定的范围内稍微提高初始光子-原子的压缩度;而关联增强拉曼散射,能够制备很强的光子-原子间的双模压缩.这样强压缩度的光子-原子量子界面,对于利用光场和原子系统实现量子精密测量研究有着非常重要的应用.  相似文献   

8.
严冬  宋立军  陈殿伟 《物理学报》2009,58(6):3679-3684
在周期性脉冲撞击的两分量玻色-爱因斯坦凝聚系统中研究了自旋压缩动力学性质,结果表明:原子自旋压缩动力学能够揭示相空间的混沌和规则结构,即当初始相干态处在混沌区域时,自旋压缩在很短时间后消失,而当初始相干态处在规则区域时,自旋压缩则存在很长时间.特别是随着时间的演化,系统的平均自旋方向的分布和摆动也与初态所处的空间结构有着密切的联系.最后,研究了相空间的整体自旋压缩动力学,得到了一种较好的量子-经典对应. 关键词: 玻色-爱因斯坦凝聚 混沌 自旋压缩 平均自旋方向  相似文献   

9.
We describe a new approach to spin squeezing based on a double-pass Faraday interaction between an optical probe and an optically dense atomic sample. A quantum eraser is used to remove residual spin-probe entanglement, thereby realizing a single-axis twisting unitary map on the collective spin. This interaction can be phase matched, resulting in exponential enhancement of squeezing as a function of optical density for times short compared to the decoherence time. In practice the scaling and peak squeezing depends on decoherence, technical loss, and noise. Including these imperfections, our model indicates that ~10 dB of squeezing should be achievable with laboratory parameters.  相似文献   

10.
We investigated spin squeezing and quantum Fisher information in generalized two-axis twisting model; which generalizes the two-axis twisting model including a linear interaction controlled by an external field. In particular, we are interested in the dependence of spin squeezing and quantum Fisher information on the external field. By adopting frozen-spin approximation, we derive the theoretical and numerical results for spin squeezing and quantum Fisher information. Except certain special conditions, the stronger external field induces to stronger squeezing. Spin squeezing parameter and the reciprocal of the mean quantum Fisher information per particle are periodic function; but the external field has not important effect on the period.  相似文献   

11.
Atomic magnetometers have achieved magnetic sensitivities in the subfemtotesla regime. Their bandwidth is determined by the transverse spin relaxation rate, 1/T2, which also determines the magnetic sensitivity. It is theoretically demonstrated that by using an electromagnetically induced transparent probe beam in a pump-probe atomic magnetometer, it is possible to operate the latter at frequencies much higher than its bandwidth, maintaining a high signal-to-noise ratio.  相似文献   

12.
利用自旋噪声谱技术研究了无缓冲气体133Cs原子气室的自旋动力学和展宽机制.在宏观原子气室中,自旋弛豫速率失谐频率谱的线型为高斯分布;在空间局域较强的微米气室中,自旋弛豫速率失谐频率谱的线型为洛伦兹分布.实验测量得到的自旋弛豫速率失谐频率谱的展宽约4 GHz,明显大于宏观原子气室中约度强烈依赖于激光相对于原子共振跃迁的频率失谐;在微米气室中,由于较强的均匀展宽,总噪声的失谐频率谱中心处出现明显的凹陷.通过建立简化的物理模型来计算微米气室的展宽机制,在实验与理论中解释了原子的均匀展宽特性.  相似文献   

13.
Spin squeezing of the two two-level atoms interacting with a binomial field has been investigated with the different initial conditions. It is shown that spin squeezing can be exhibited in the certain range of p and the degree of squeezing is dependent on p.  相似文献   

14.
High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation   总被引:1,自引:0,他引:1  
Alkali-metal magnetometers compete with SQUID detectors as the most sensitive magnetic field sensors. Their sensitivity is limited by relaxation due to spin-exchange collisions. We demonstrate a K magnetometer in which spin-exchange relaxation is completely eliminated by operating at high K density and low magnetic field. Direct measurements of the signal-to-noise ratio give a magnetometer sensitivity of 10 fT Hz(-1/2), limited by magnetic noise produced by Johnson currents in the magnetic shields. We extend a previous theoretical analysis of spin exchange in low magnetic fields to arbitrary spin polarizations and estimate the shot-noise limit of the magnetometer to be 2x10(-18) T Hz(-1/2).  相似文献   

15.
The changes in the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which takes into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examining the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitudes lower than the Gunn field, the dephasing length shortens with increasing noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.  相似文献   

16.
We investiage Local Unitary Invariant Spin Squeezing (LUISS) in symmetric and non-symmetric multiqubit states. On developing an operational procedure to evaluate Local Unitary Invariant Spin Squeezing parameters, we explicitly evaluate these parameters for pure as well as mixed non-symmetric multiqubit states. We show that the existence of local unitary invariant version of Kitegawa-Ueda spin squeezing may not witness pairwise entanglement whereas the local unitary invariant analogue of Wineland spin squeezing necessarily implies pairwise entanglement.  相似文献   

17.
Squeezed spin states possess unique quantum correlation or entanglement and are significantly promising for advancing quantum information processing and quantum metrology. In recent back-to-back publications [C. Gross et al., Nature (London) 464, 1165 (2010) and Max F. Riedel et al., Nature (London) 464, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2 and -2.5 dB, respectively, in two-component atomic condensates exhibiting one-axis-twisting interactions. The noise reduction limit for the one-axis twisting scales as ∝1/N(2/3), which for a condensate with N~10(3) atoms is about 100 times below the standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the one-axis-twisting spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction ∝1/N or an extra tenfold improvement for N~10(3).  相似文献   

18.
Electron spin resonance-scanning tunneling microscopy (ESR-STM) is a rapidly developing surface-science technique that is sensitive to a single spin existing on or nearby a solid surface. The single spin is detected through elevated noise at the Larmor frequency that appears when the single spin participates in the tunneling process between the tip and the surface. In this review, experimental and theoretical works which have been performed up to date on ESR-STM are reviewed. The remaining experimental problems which have to be solved, possible approaches to differentiate between different mechanisms and the future of ESR-STM are discussed.\ PACS: 72.25.Dc Spin polarized transport in semiconductors, 72.70.+m Noise processes and phenomena, 73.20.Hb Impurity and defect levels; energy states of adsorbed species, 73.40.Gk Tunneling, 75.70.Rf Surface magnetism, 75.76.+j Spin transport effects, 76.30.-v Electron paramagnetic resonance and relaxation, 78.47.-p Spectroscopy of solid state dynamics  相似文献   

19.
We propose a scheme to coherently control spin squeezing of atomic Bose-Einstein condensate (BEC) via the technique of electromagnetically induced transparency (EIT). We study quantum dynamics of the mean spin vector and spin squeezing. It is shown that the mean spin vector and spin squeezing of the BEC can be controlled and manipulated by adjusting the external coupling fields or/and internal nonlinear interactions of the BEC. It is indicated that the spin squeezing can be generated rapidly in the dynamical process and maintained in a long time interval. It is found that a larger effective Rabi coupling between atoms and lasers can produce a stronger spin squeezing, and the squeezing can maintain a longer time interval.  相似文献   

20.
Aditi Ray  R R Puri 《Pramana》1998,50(3):253-261
A squeezed atomic state is that state of a system of two-level atoms for which the intrinsic quantum noise in a process of measurement is less than the minimum noise obtained by using a spin coherent state. It is shown that such a state is generated in certain time intervals when a non-squeezed atomic state evolves on interaction with a single mode coherent field inside a lossless cavity. The atoms are assumed to undergo one-photon or two-photon transitions between the given two levels. The maximum atomic squeezing is found as a function of the number of atoms and the field strength. The effect of the field-dependent Stark shift is investigated in the case of the atoms undergoing two-photon transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号