首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that under the action of a proper microwave pulse sequence the equilibrium polarization of the electron spin may be transferred dynamically to the longitudinal nuclear magnetization which will oscillate due to the nuclear spin precession around the effective fields relating to differnt electron quantum number manifolds. These oscillations may be measured directly in the radiofrequency band. Analytical formulae are obtained for the case when all the nuclei coupled to an unpaired electron have spins of 1/2.  相似文献   

2.
A review is given of newly developed pulsed Electron Spin Resonance (ESR) methods for dynamic polarization of nuclear spins. The application of two of these methods, Nuclear Orientation Via Electron spin Locking (NOVEL) and the Integrated Solid Effect (ISE), for the polarization of nuclear spins in semiconductors is discussed in more detail. It is proposed to use these methods to study the ESR spectrum of unpaired electrons in the vicinity of muons that are bound in a solid. Thus, ESR would be observed with a sensitivity which is enhanced by about ten orders of magnitude compared to conventional ESR.  相似文献   

3.
We propose a torsional resonator that couples to the transverse spin dipole of an attached sample. The absence of relative motion eliminates a source of friction that would otherwise hinder nanoscale implementation. Enhanced spontaneous emission induced by the resonator relaxes the longitudinal spin dipole at a rate of ~1 s?1 in the low-temperature limit. With signal averaging, single-proton magnetic resonance spectroscopy appears feasible at ~10 mK and a high magnetic field, while single-shot sensitivity is practical for samples with at least tens of protons in a volume of ~5 nm3.  相似文献   

4.
We present measurements of the buildup and decay of nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that we polarize the nuclei in a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize nuclear spins in milliseconds whereas in the absence of the electron the nuclear spin lifetime is on the scale of seconds. This lifetime is further enhanced by 1-2 orders of magnitude by quenching the nonsecular nuclear dipole-dipole interactions with a magnetic field of 1 mT.  相似文献   

5.
We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation, we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g factors of electrons and light-holes. The result encourages us to make a quantum media converter between flying photon qubits and stationary electron-spin qubits in semiconductors.  相似文献   

6.
7.
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.  相似文献   

8.
We propose a scheme to achieve nuclear-nuclear indirect interactions mediated by a mechanically driven nitrogen-vacancy (NV) center in a diamond. Here we demonstrate two-qubit entangling gates and quantum-state transfer between two carbon nuclei. When the dipole-dipole interaction strength is much larger than the driving field strength, the scheme is robust against decoherence caused by coupling between the NV center (nuclear spins) and the environment. Conveniently, precise control of dipole coupling is not required so this scheme is insensitive to fluctuating positions of the nuclear spins and the NV center. Our scheme provides a general blueprint for multi-nuclear-spin gates and for multi-party communication.  相似文献   

9.
10.
At Kazan State University a number of experiments have been proposed using solid paramagnetic compounds to produce nuclear polarization in liquid helium-three, for which the nuclear resonance frequency isf n=32.4 MHz T?1. This note suggests the application of magnetic resonance in antiferromagnetic compounds to this problem. In addition to a range of 3d ions, two compounds of lanthanide ions which become antiferromagnetic at liquid helium temperatures are discussed. Also, electron paramagnetic resonance is proposed using trivalent erbium ions at low abundance in metallic silver.  相似文献   

11.
We report record high 29Si spin polarization obtained using dynamic nuclear polarization in microcrystalline silicon powder. Unpaired electrons in this silicon powder are due to dangling bonds in the amorphous region of this intrinsically heterogeneous sample. 29Si nuclei in the amorphous region become polarized by forced electron-nuclear spin flips driven by off-resonant microwave radiation while nuclei in the crystalline region are polarized by spin diffusion across crystalline boundaries. Hyperpolarized silicon microparticles have long T1 relaxation times and could be used as tracers for magnetic resonance imaging.  相似文献   

12.
We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.  相似文献   

13.
B. BLEANEY 《Molecular physics》2013,111(1-2):305-306
Dynamic nuclear polarization is a well established technique which has been used to produce polarized targets for experiments in nuclear physics. This paper suggests experiments of a similar type but involving the nuclear magnetic resonance of two isotopes, one stable and the other radioactive. The substance is an antiferromagnet, dysprosium phosphate, at temperatures below the Néel point, where line widths are comparatively small. The effect may be detected through changes in the rate of gamma ray emission observed by a nuclear orientation experiment.  相似文献   

14.
Dynamic nuclear polarization is a well established technique, which has been used to produce polarized targets for experiments in nuclear physics. This paper suggests new experiments, involving the nuclear magnetic resonance of two isotopes, one stable, the other radioactive, in an antiferromagnet, terbium vanadate. At temperatures well below the Néel point, the line widths should be comparatively small. Resonance may be detected through changes in the rate of gamma-ray emission observed by a nuclear orientation experiment.  相似文献   

15.
In an effort to realize a two-bit processor for a quantum computer on the basis of single nitrogen-vacancy defect centers (NV centers) in diamond, the optically detected nutations of the electron spin of a single NV center in the ground state and of the nuclear spin of a 13C atom located at a diamond lattice site nearest to the NV center are studied. The photodynamics of NV and NV + 13C centers under different temperatures and optical excitation conditions is discussed. A seven-level model of a center excited by radiation from an Ar+ laser at room temperature is proposed. On the basis of this model, the experimental spectra of optically detected electron paramagnetic and electron-nuclear double resonances of single NV and NV + 13C centers in diamond nanocrystals, as well as experimental data on the optically detected nutations of the electron and nuclear spins of these centers caused by the actions of pulsed microwave and radiofrequency fields, respectively, are interpreted.  相似文献   

16.
Properly prepared pulse sequences of microwave and radio frequency have been employed to investigate the effect of polarization transfer from the polarized photo excited triplet state of pentacene in p-terphenyl crystals to the surrounding protons in pulsed ENDOR experiments. The ENDOR signal, measured as the change of electron spin echo (ESE) amplitude, is affected by the mode of RF pulses. When B0 parallelx (the long molecular axis), the ESE amplitude of the high-field transition of the triplet state changes from the maximum positive to zero with a pi RF pulse, and to the maximum negative with a 2pi pulse, while that of the low-field transition changes from nearly zero to the maximum negative as the RF pulse width increases. The effect is attributed to the strong electron spin polarization produced in the creation of the photoexcited triplet state and the subsequent efficient electron- nuclear polarization transfer process.  相似文献   

17.
We propose to store nonclassical states of light into the macroscopic collective nuclear spin (10(18) atoms) of a 3He vapor, using metastability exchange collisions. These collisions, commonly used to transfer orientation from the metastable state 2 3S1 to the ground state of 3He, can also transfer quantum correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a nuclear spin state with very long storage times (hours).  相似文献   

18.
19.
We demonstrate dynamical nuclear-spin polarization in the absence of an external magnetic field by resonant circularly polarized optical excitation of a single electron or hole charged quantum dot. Optical pumping of the electron spin induces an effective inhomogeneous magnetic (Knight) field that determines the direction along which nuclear spins could polarize and enables nuclear-spin cooling by suppressing depolarization induced by nuclear dipole-dipole interactions. Our experiments constitute a first step towards a quantum measurement of the Overhauser field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号