共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin relaxation from a triplet excited state to a singlet ground state in a semiconductor quantum dot is studied by employing an electrical pump-and-probe method. Spin relaxation occurs via co-tunneling when the tunneling rate is relatively large, confirmed by a characteristic square dependence of the relaxation rate on the tunneling rate. When co-tunneling is suppressed by reducing the tunneling rate, the intrinsic spin relaxation is dominated by spin-orbit interaction. We discuss a selection rule of the spin-orbit interaction based on the observed double-exponential decay of the triplet state. 相似文献
2.
3.
Hanson R Witkamp B Vandersypen LM van Beveren LH Elzerman JM Kouwenhoven LP 《Physical review letters》2003,91(19):196802
We have measured the relaxation time, T1, of the spin of a single electron confined in a semiconductor quantum dot (a proposed quantum bit). In a magnetic field, applied parallel to the two-dimensional electron gas in which the quantum dot is defined, Zeeman splitting of the orbital states is directly observed by measurements of electron transport through the dot. By applying short voltage pulses, we can populate the excited spin state with one electron and monitor relaxation of the spin. We find a lower bound on T1 of 50 micros at 7.5 T, only limited by our signal-to-noise ratio. A continuous measurement of the charge on the dot has no observable effect on the spin relaxation. 相似文献
4.
Meunier T Vink IT van Beveren LH Tielrooij KJ Hanson R Koppens FH Tranitz HP Wegscheider W Kouwenhoven LP Vandersypen LM 《Physical review letters》2007,98(12):126601
We observe an experimental signature of the role of phonons in spin relaxation between triplet and singlet states in a two-electron quantum dot. Using both the external magnetic field and the electrostatic confinement potential, we change the singlet-triplet energy splitting from 1.3 meV to zero and observe that the spin relaxation time depends nonmonotonously on the energy splitting. A simple theoretical model is derived to capture the underlying physical mechanism. The present experiment confirms that spin-flip energy is dissipated in the phonon bath. 相似文献
5.
We report electronic control and measurement of an imbalance between spin-up and spin-down electrons in micron-scale open quantum dots. Spin injection and detection were achieved with quantum point contacts tuned to have spin-selective transport, with four contacts per dot for realizing a nonlocal spin-valve circuit. This provides an interesting system for studies of spintronic effects since the contacts to reservoirs can be controlled and characterized with high accuracy. We show how this can be used to extract in a single measurement the relaxation time for electron spins inside a ballistic dot (tau(sf) approximately equal to 300 ps) and the degree of spin polarization of the contacts (P approximately equal to 0.8). 相似文献
6.
We investigate the triplet-singlet relaxation in a double quantum dot defined by top gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong interdot coupling relaxation is dominated by two individual mechanisms, the relaxation is strongly reduced at intermediate coupling and finite magnetic field. In addition we observe a characteristic bistability of the spin-nonconserving current as a function of magnetic field. We propose a model where these features are explained by the polarization of nuclear spins enabled by the interplay between hyperfine and spin-orbit mediated relaxation. 相似文献
7.
A. F.?Amin G. Q.?Li A. H.?Phillips U.?Kleinekath?fer 《The European Physical Journal B - Condensed Matter and Complex Systems》2009,68(1):103-109
Within the weak-coupling regime the spin current through a quantum dot system is calculated using a quantum master equation
approach which includes a sum over Matsubara terms. To be able to efficiently calculate, also at low temperatures, the time
evolution of the reduced density matrix a high-temperature approximation was derived which proves to be rather accurate in
comparison to the exact results. In the present model it is assumed that the energy levels of the dot are split by a constant
magnetic field. An additional external (laser) field is used to control the currents of the two spin polarizations. This is
either done using the phenomenon of coherent destruction of tunneling or optimal control theory. Scenarios are studied in
which the spin current is reversed while the charge current is kept constant. 相似文献
8.
Léger Y Besombes L Fernández-Rossier J Maingault L Mariette H 《Physical review letters》2006,97(10):107401
We report on the reversible electrical control of the magnetic properties of a single Mn atom in an individual quantum dot. Our device permits us to prepare the dot in states with three different electric charges, 0, +1e, and -1e which result in dramatically different spin properties, as revealed by photoluminescence. Whereas in the neutral configuration the quantum dot is paramagnetic, the electron-doped dot spin states are spin rotationally invariant and the hole-doped dot spins states are quantized along the growth direction. 相似文献
9.
Laurent S Eble B Krebs O Lemaître A Urbaszek B Marie X Amand T Voisin P 《Physical review letters》2005,94(14):147401
We report on optical orientation of singly charged excitons (trions) in charge-tunable self-assembled InAs/GaAs quantum dots. When the charge varies from 0 to -2, the trion photoluminescence of a single quantum dot shows up and under quasiresonant excitation gets progressively polarized from zero to approximately 100%. This behavior is interpreted as the electric control of the trion thermalization process, which subsequently acts on the hole-spin relaxation driven in nanosecond time scale by the anisotropic electron-hole exchange. This is supported by the excitation spectroscopy and time-resolved measurements of a quantum dot ensemble. 相似文献
10.
Smith JM Dalgarno PA Warburton RJ Govorov AO Karrai K Gerardot BD Petroff PM 《Physical review letters》2005,94(19):197402
We report the observation of a spin-flip process in a quantum dot whereby a dark exciton with total angular momentum L = 2 becomes a bright exciton with L = 1. The spin-flip process is revealed in the decay dynamics following nongeminate excitation. We are able to control the spin-flip rate by more than an order of magnitude simply with a dc voltage. The spin-flip mechanism involves a spin exchange with the Fermi sea in the back contact of our device and corresponds to the high temperature Kondo regime. We use the Anderson Hamiltonian to calculate a spin-flip rate, and we find excellent agreement with the experimental results. 相似文献
11.
We investigate the Kondo effect and spin blockade observed in a many-electron quantum dot and study the magnetic field dependence. At lower fields, a pronounced Kondo effect is found, which is replaced by the spin blockade at higher fields. In an intermediate regime, both effects are visible. We make use of this combined effect to gain information about the internal spin configuration of our quantum dot. We find that the data cannot be explained assuming regular filling of electronic orbitals. Instead, spin polarized filling seems to be probable. 相似文献
12.
We propose a protocol for a controlled experiment to measure a weak value of the electron's spin in a solid state device. The weak value is obtained by a two step procedure--weak measurement followed by a strong one (postselection), where the outcome of the first measurement is kept provided a second postselected outcome occurs. The setup consists of a double quantum dot and a weakly coupled quantum point contact to be used as a detector. Anomalously large values of the spin of a two electron system are predicted, as well as negative values of the total spin. We also show how to incorporate the adverse effect of decoherence into this procedure. 相似文献
13.
We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 micros at 70 mT. These results are in the range of theoretical predictions of the electron spin coherence time governed by the electron-nuclear dynamics. 相似文献
14.
Ramsay AJ Boyle SJ Kolodka RS Oliveira JB Skiba-Szymanska J Liu HY Hopkinson M Fox AM Skolnick MS 《Physical review letters》2008,100(19):197401
We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state. 相似文献
15.
Kroner M Weiss KM Biedermann B Seidl S Manus S Holleitner AW Badolato A Petroff PM Gerardot BD Warburton RJ Karrai K 《Physical review letters》2008,100(15):156803
We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance. The scheme is sensitive even to rf fields of just a few microT. In one case, the spin resonance behaves as a driven 3-level lambda system with weak damping; in another one, the dot exhibits remarkably strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with fluctuating resonant positions, evidence of unusual dynamic processes. 相似文献
16.
We study dc charge and spin transport through a weakly coupled quantum dot, driven by a nonadiabatic periodic change of system parameters. We generalize the model of Tien and Gordon to simultaneously oscillating voltages and tunnel couplings. When applying our general result to the two-parameter charge pumping in quantum dots, we find interference effects between the oscillations of the voltage and tunnel couplings. We show that these interference effects may explain recent measurements in metallic islands. Furthermore, we discuss the possibility to electrically pump a spin current in presence of a static magnetic field. 相似文献
17.
We study the spin-flip process from the first excited state to the ground state due to the spin-phonon coupling in a two-electron quantum dot in the presence of a magnetic field. We give several possible relaxation channels before and after the crossing of the Zeeman sublevels. Our results show that the Coulomb interactions between the electrons of different channels play quite different roles and thus inducing different spin relaxation behaviors. 相似文献
18.
L. Besombes C. Le Gall H. Boukari R. Kolodka D. Ferrand J. Cibert H. Mariette 《Solid State Communications》2009,149(35-36):1472-1478
The magnetic state of a single magnetic atom (Mn) embedded in an individual semiconductor quantum dot is optically probed using micro-spectroscopy. A high degree of spin polarization can be achieved for an individual Mn atom localized in a quantum dot using quasi-resonant or fully-resonant optical excitation at zero magnetic field. Optically created spin polarized carriers generate an energy splitting of the Mn spin and enable magnetic moment orientation controlled by the photon helicity and energy. The dynamics and the magnetic field dependence of the optical pumping mechanism shows that the spin lifetime of an isolated Mn atom at zero magnetic field is controlled by a magnetic anisotropy induced by the built-in strain in the quantum dots. The Mn spin distribution prepared by optical pumping is fully conserved for a few microseconds. This opens the way to full optical control of the spin state of an individual magnetic atom in a solid state environment. 相似文献
19.
《Physica E: Low-dimensional Systems and Nanostructures》2011,43(10):2690-2693
In this paper we demonstrate optical writing of information on the spin state of a single Mn ion embedded in a CdTe/ZnTe quantum dot. As a tool for Mn spin orientation we use a spin-conserving transfer of excitation between two coupled quantum dots, one of them containing the Mn ion. Excitons created by circularly polarized light act on the Mn ion via the sp–d exchange interaction and orient its spin. The magnetic field of 1 T strongly enhances the orientation efficiency due to suppression of fast Mn spin relaxation mechanisms. Dynamics of the Mn spin under polarized excitation was measured in a time-resolved experiment, in which the intensity and polarization of excitation were modulated. Observed dynamics of the Mn spin can be described with a simple rate equation model. 相似文献
20.
Balocchi A Duong QH Renucci P Liu BL Fontaine C Amand T Lagarde D Marie X 《Physical review letters》2011,107(13):136604
The electron spin dynamics in (111)-oriented GaAs/AlGaAs quantum wells is studied by time-resolved photoluminescence spectroscopy. By applying an external electric field of 50 kV/cm a two-order of magnitude increase of the spin relaxation time can be observed reaching values larger than 30 ns; this is a consequence of the electric field tuning of the spin-orbit conduction band splitting which can almost vanish when the Rashba term compensates exactly the Dresselhaus one. The measurements under a transverse magnetic field demonstrate that the electron spin relaxation time for the three space directions can be tuned simultaneously with the applied electric field. 相似文献