首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report an electron spin resonance (ESR) study on single crystals of the heavy fermion metal YbRh2Si2 which shows pronounced non-Fermi liquid behavior related to a close antiferromagnetic quantum critical point. It is shown that the observed ESR spectra can be ascribed to a bulk Yb3+ resonance. This is the first observation of ESR of the Kondo ion itself in a dense Kondo lattice system. The ESR signal occurs below the Kondo temperature (T(K)) which thus indicates the existence of large unscreened Yb3+ moments below T(K). We observe the spin dynamics as well as the static magnetic properties of the Yb3+ spins to be consistent with the results of nuclear magnetic resonance and magnetic susceptibility.  相似文献   

2.
We develop a theoretical basis for understanding the spin relaxation processes in Kondo lattice systems with heavy fermions as experimentally observed by electron spin resonance (ESR). The Kondo effect leads to a common energy scale that regulates a logarithmic divergence of different spin kinetic coefficients and supports a collective spin motion of the Kondo ions with conduction electrons. We find that the relaxation rate of a collective spin mode is greatly reduced due to a mutual cancellation of all the divergent contributions even in the case of the strongly anisotropic Kondo interaction. The contribution to the ESR linewidth caused by the local magnetic field distribution is subject to motional narrowing supported by ferromagnetic correlations. The developed theoretical model successfully explains the ESR data of YbRh2Si2 in terms of their dependence on temperature and magnetic field.  相似文献   

3.
Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ? 1. The connection with theoretical studies of a two-component model with like spins is also discussed.  相似文献   

4.
Electron spin resonance (ESR) can probe conduction electrons (CE) and local moment (LM) spin systems in different materials. A CE spin resonance (CESR) is observed in metallic systems based on light elements or with enhanced Pauli susceptibility. LM ESR can be seen in compounds with paramagnetic ions and localized d or f electrons. Here we report a remarkable and unprecedented ESR signal in the heavy-fermion superconductor β-YbAlB? [S. Nakatsuji et al., Nature Phys. 4, 603 (2008)] which behaves as a CESR at high temperatures and acquires characteristics of the Yb3? LM ESR at low temperature. This dual behavior strikes as an in situ unique observation of the Kondo quasiparticles in a quantum critical regime. The proximity to a quantum critical point may favor the appearance of this dual character of the ESR signal in β-YbAlB?.  相似文献   

5.
《Physics letters. A》2001,284(6):286-293
Spin dynamics is calculated in the ferromagnetic (FM) state of the generalized Kondo lattice model taking into account strong on-site correlations between eg electrons and antiferromagnetic (AFM) exchange among t2g spins. Our study suggests that competing FM double-exchange and AFM super-exchange interaction lead to a rather nontrivial spin-wave spectrum. While spin excitations have a conventional Dq2 spectrum in the long-wavelength limit, there is a strong deviation from the spin-wave spectrum of the isotropic Heisenberg model close to the zone boundary. The relevance of our results to the experimental data are discussed.  相似文献   

6.
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions.  相似文献   

7.
The temperature and angular dependences of electron spin resonance (ESR) spectra of Yb3+ ions in a single crystal of fluctuating-valence compound YbB12 were studied. The existence of Yb?Yb ion pairs was observed in a cubic-symmetry crystal. The ions forming the pairs are coupled by the isotropic exchange but interact also with the other pairs by the dipole and exchange coupling. The occurrence of a slight anisotropy in a cubic semiconductor may be the result of a spontaneous break of symmetry specific for the ground state of the Kondo dielectric. A strong temperature dependence of the amplitude of the ESR signals is found at 1.6–4.2 K and interpreted as a result of the capture of electrons by Yb3+ ions from electron traps with a binding energy of 18 K. ESR spectra of Yb3+ single ions in the Γ6 state were observed also. The decrease of temperature from 4.2 to 1.6 K indicates a tendency to the ferromagnetic ordering of Yb?Yb pairs.  相似文献   

8.
The discovery that some Yb intermetallic compounds exhibit many of the interesting Kondo‐related properties found in analogous Ce compounds has led to a number of new experimental and theoretical activities to understand the ground state properties of this class of materials. In this paper we give a brief review of our very recent results on the effect of pressure on the magnetic and electronic properties of the ferromagnetic Kondo lattice (KL) YbNiSn and isostructural antiferromagnetic KL YbPtAl using the 170Yb Mössbauer effect technique, electrical resistance and X‐ray diffraction, respectively. We show that the magnetic ground state properties of YbNiSn and YbPtAl are governed by a volume dependent competition between frustrated anisotropic exchange interactions and the crystal electric field anisotropy rather than by a direct competition between Kondo and RKKY interactions.  相似文献   

9.
We solve the 3D periodic Anderson model using a two impurity cluster dynamical mean field theory. We obtain the temperature versus hybridization phase diagram. Approaching the quantum critical point (QCP) both the Néel and lattice Kondo temperatures decrease and they do not cross at the lowest temperature we reached. While strong ferromagnetic spin fluctuation on the Kondo side is observed, our result suggests the critical static spin susceptibility is local in space at the QCP. We observe in the crossover region a logarithmic temperature dependence in the specific heat coefficient and spin susceptibility.  相似文献   

10.
Tailor-made nano-structured spin materials obtained by precisely controlled nano-scale fabrication technologies for use in ultra-high density hard disk drives (HDDs), as well as an understanding of their nanomagnetics, are essential from the view point of materials, processes, and physics. Artificial control of the exchange coupling among ferromagnetic layers through the RKKY interaction (indirect) and direct exchange coupling represented as the exchange bias at the ferromagnetic (FM)/antiferromagnetic (AFM) interface are of great interest and have received significant attention to induce new modulated spin structures in conventional simple FM materials. In particular, soft magnetic under layer (SUL) with strong synthetic antiferromagnetic (SAF) coupling between two adjacent soft magnetic layers, exchange coupled stacked media introducing exchange coupling between FM layers and giant exchange anisotropy at the FM/AFM interface have attracted significant attention from the view point of applications. Within the framework of the present paper, we discuss future technical trends for SUL, granular media and the spin-valve head from the viewpoint of direct and/or indirect exchange coupling based on our recent results.  相似文献   

11.
基于密度泛函理论(DFT),使用局域密度近似(LDA)研究了Heusler合金Cu1-xFexMnSb的电子结构和反铁磁-铁磁相变。研究发现,两种磁状态下的合金晶格常数随掺杂浓度x变化很好地满足Vegard定理。当x>0.5时,铁磁态合金的总磁矩很好地符合SP规律,然而当x<0.5时,却发生了明显的偏离。由于整个体系存在RKKY和超交换磁耦合的竞争,因而在x=0.25时,我们观察到了独特的反铁磁—铁磁相变。进一步的态密度分析发现,Cu的掺杂浓度可以有效调整铁磁态合金的费米面位置,并且反铁磁态合金由于不同自旋方向的Mn原子的分波态密度相互补偿,总态密度形成了几乎完全对称的自旋向上带和自旋向下带。  相似文献   

12.
基于密度泛函理论(DFT),使用局域密度近似(LDA)研究了Heusler合金Cu1-xFex MnSb的电子结构和反铁磁-铁磁相变.研究发现,两种磁状态下的合金晶格常数随掺杂浓度x变化很好地满足Vegard定理.当x0.5时,铁磁态合金的总磁矩很好地符合SP规律,然而当x0.5时,却发生了明显的偏离.由于整个体系存在RKKY和超交换磁耦合的竞争,因而在x=0.25时,我们观察到了独特的反铁磁—铁磁相变.进一步的态密度分析发现,Cu的掺杂浓度可以有效调整铁磁态合金的费米面位置,并且反铁磁态合金由于不同自旋方向的Mn原子的分波态密度相互补偿,总态密度形成了几乎完全对称的自旋向上带和自旋向下带.  相似文献   

13.
Motivated by recent Hall-effect experiment in YbRh(2)Si(2), we study ground state properties of a Kondo lattice model in a two-dimensional square lattice using variational Monte Carlo method. We show that there are two types of phase transition, an antiferromagnetic transition and a topological one (Fermi-surface reconstruction). In a wide region of parameters, these two transitions occur simultaneously without the breakdown of Kondo screening, accompanied by a discontinuous change of the Hall coefficient. This result is consistent with the experiment and gives a novel theoretical picture for the quantum critical point in heavy-fermion systems.  相似文献   

14.
A model of spin relaxation of Kondo lattices is proposed to explain the angular dependence of the electron spin resonance (ESR) parameters in the heavy fermion compounds Y bIr(2)Si(2) and Y bRh(2)Si(2). A perturbational scaling approach reveals a collective spin motion of Yb?ions with conduction electrons in the bottleneck regime. A common energy scale due to the Kondo effect regulates the temperature dependence of different kinetic coefficients to result in a mutual cancelation of all divergent parts in a collective spin mode. The angular dependence of the ESR intensity, linewidth and resonant frequency is shown to be in good agreement with experimental data on Y bIr(2)Si(2) and Y bRh(2)Si(2). In particular, the unexpectedly weak dependence of the ESR intensity on the orientation of the microwave magnetic field agrees with the properties of the discussed model.  相似文献   

15.
As shown by angle-resolved photoemission (PE), hybridization of bulk Yb 4f(2+) states with a shallow-lying valence band of the same symmetry leads in YbRh2Si2 to dispersion of a 4f PE signal in the region of the Kondo resonance with a Fermi-energy crossing close to Gamma[over ]. Additionally, renormalization of the valence state results in the formation of a heavy band that disperses parallel to the 4f originating signal. The symmetry and character of the states are probed by circular dichroism and the photon-energy dependence of the PE cross sections.  相似文献   

16.
We measure the spin lattice relaxation of the planar In(1) nuclei in the CeMIn5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn5 and CeCoIn5, and identify a crossover in the normal state. Above a temperature T(*) the Ce lattice exhibits "Kondo gas" behavior characterized by local fluctuations of independently screened moments; below T(*) both systems exhibit a "Kondo liquid" regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn5.  相似文献   

17.
The nature of the magnetic ground state near the insulator-metal transition (IMT) in La(1-x)Ba(x)CoO3 was investigated via neutron scattering. Below the critical concentration, x(c)~0.22, a commensurate antiferromagnetic (AFM) phase appears initially. Upon approaching x(c), the AFM component weakens and a ferromagnetic (FM) ordered phase sets in while in the rhombohedral lattice. At x(c), a spin flip to a new FM structure occurs at the same time as the crystal symmetry transforms to orthorhombic (Pnma). The Pnma phase may be the driving force for the IMT.  相似文献   

18.
Angle-resolved photoelectron spectroscopy (ARPES) was used to study the Fermi surface of the heavy-fermion system YbRh(2)Si(2) at a temperature of about 10 K, i.e., a factor of 2 below the Kondo energy scale. We observed sharp structures with a well-defined topology, which were analyzed by comparing with results of band-structure calculations based on the local-density approximation (LDA). The observed bulk Fermi surface presents strong similarities with that expected for a trivalent Yb state, but is slightly larger, has a strong Yb-4f character, and deviates from the LDA results by a larger region without states around the Γ point. These properties are qualitatively explained in the framework of a simple f-d hybridization model. Our analysis highlights the importance of taking into account surface states and doing an appropriate projection along k(z) when comparing ARPES data with results from theoretical calculations.  相似文献   

19.
We report on a comprehensive optical, transport, and thermodynamic study of the Zintl compound Yb(14)MnSb(11), demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenario whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.  相似文献   

20.
We report measurements of the magnetic susceptibility and electrical resistivity of the iostructural compounds RE2Zn17 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The composition dependence of the lattice parameter and effective moment indicate that all the RE ions are trivalent except Yb which is divalent. Magnetic order is observed in compounds where RE=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er. A second transition is seen for RE=Pr, Ho, Sm and Tb. Superzone boundary effects are observed in the electrical resistivity of these four alloys as well as in Er2Zn17. Resistivity measurements reveal concentrated Kondo behavior (or 4f instability) of Ce in Ce2Zn17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号