首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilayer graphene has attracted considerable interest due to the important role played by many-body effects, particularly at low energies. Here we report local compressibility measurements of a suspended graphene bilayer. We find that the energy gaps at filling factors ν= ± 4 do not vanish at low fields, but instead merge into an incompressible region near the charge neutrality point at zero electric and magnetic field. These results indicate the existence of a zero-field ordered state and are consistent with the formation of either an anomalous quantum Hall state or a nematic phase with broken rotational symmetry. At higher fields, we measure the intrinsic energy gaps of broken-symmetry states at ν=0, ± 1, and ± 2, and find that they scale linearly with magnetic field, yet another manifestation of the strong Coulomb interactions in bilayer graphene.  相似文献   

2.
吴江滨  张昕  谭平恒  冯志红  李佳 《物理学报》2013,62(15):157302-157302
本文将第一性原理和紧束缚方法结合起来, 研究了层间不同旋转角度对双层石墨烯的电子能带结构和态密度的影响. 分析发现, 旋转双层石墨烯具有线性的电子能量色散关系, 但其费米速度随着旋转角度的减小而降低. 进一步研究其电子能带结构发现, 不同旋转角度的双层石墨烯在M点可能会出现大小不同的的带隙, 而这些能隙会增强双层石墨烯的拉曼模强度, 并由拉曼光谱实验所证实. 通过对比双层石墨烯的晶体结构和电子态密度, 发现M点处带隙来自于晶体结构中的“类AB堆垛区”. 关键词: 旋转双层石墨烯 第一性原理 紧束缚 电子结构  相似文献   

3.
4.
赵小明  吴亚杰  陈婵  梁颖  寇谡鹏 《中国物理 B》2016,25(11):117303-117303
In this paper,we study the quantum properties of a bilayer graphene with(asymmetry) line defects.The localized states are found around the line defects.Thus,the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel.By adding a bias potential along the direction of the line defects,we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Biittiker theory,and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene.This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering.  相似文献   

5.
Electronic thermal conductivity κe is investigated, using Boltzmann transport equation approach, in a suspended and supported bilayer graphene (BLG) as a function of temperature and electron concentration. The electron scattering due to screened charged impurity, short-range disorder and acoustic phonon via deformation potential are considered for both suspended and supported BLG. Additionally, scattering due to surface polar phonons, is considered in supported BLG. In suspended BLG, calculated κe is compared with the experimental data leaving the phonon thermal conductivity. It is emphasized that κe is important in samples with very high electron concentration and reduced phonon thermal conductivity. κe is found to be about two times smaller in supported BLG compared to that in suspended BLG. With the reduced extrinsic disorders, in principle, the intrinsic scattering by acoustic phonons can set a fundamental limit on possible intrinsic κe.  相似文献   

6.
We study the electronic transport properties of dual-gated bilayer graphene devices. We focus on the regime of low temperatures and high electric displacement fields, where we observe a clear exponential dependence of the resistance as a function of displacement field and density, accompanied by a strong nonlinear behavior in the transport characteristics. The effective transport gap is typically 2 orders of magnitude smaller than the optical band gaps reported by infrared spectroscopy studies. Detailed temperature dependence measurements shed light on the different transport mechanisms in different temperature regimes.  相似文献   

7.
We study the problem of impurities and midgap states in a biased graphene bilayer. We show that the properties of the bound states, such as localization lengths and binding energies, can be controlled externally by an electric field effect. Moreover, the band gap is renormalized and impurity bands are created at finite impurity concentrations. Using the coherent potential approximation, we calculate the electronic density of states and its dependence on the applied bias voltage.  相似文献   

8.
The pairing of electrons and holes due to their Coulomb attraction in two parallel, independently gated graphene layers separated by a barrier is considered. At a weak coupling, there exists the BCS-like pair-condensed state. Despite the fact that electrons and holes behave like massless Dirac fermions, the problem of BCS-like electron—hole pairing in the graphene bilayer turns out to be rather similar to that in usual coupled semiconductor quantum wells. The distinctions are due to the Berry phase of electronic wavefunctions and different screening properties. We estimate the values of the gap in a one-particle excitation spectrum for different interlayer distances and carrier concentrations. The influence of the disorder is discussed. At a large enough dielectric susceptibility of the surrounding medium, the weak coupling regime holds at arbitrarily small carrier concentrations. Localized electron—hole pairs are absent in graphene, thus the behavior of the system versus the coupling strength is cardinally different from usual BCS—BEC crossover. The text was submitted by the authors in English.  相似文献   

9.
R. Majidi  A.R. Karami 《Molecular physics》2013,111(21):3194-3199
In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.  相似文献   

10.
Quantum magnetic oscillations of the density of states of a weakly doped graphene bilayer in the presence of a voltage on the gate have been studied. It has been shown that there are additional peaks in the spectrum of oscillations, when the chemical potential is located in the region of the inverted (owing to the voltage on the gate) part of the energy spectrum. Owing to the inverted band structure, quantum oscillations also exist in undoped graphene, when the chemical potential is inside the band gap. A clear physical interpretation of the results is given.  相似文献   

11.
A new approach, which makes the Hamiltonian of the Peierls tight-binding model change into a band matrix, is used to investigate the Landau levels in a AA-stacked bilayer graphene. The interlayer atomic hoppings could induce an energy gap, the asymmetry of the Landau levels about the chemical potential, the random variation in the level spacing, more fourfold degenerate Landau levels at low energy, and the oscillatory Landau levels and the complicated state degeneracies at moderate energy. For the low-energy Landau levels, their dependence on the quantum number and the field strength cannot be well characterized by a simple power law. They exhibit a anomalous oscillation during the variation of the magnetic field. The main features of the magnetoelectronic states are directly reflected in density of states.  相似文献   

12.
Using the Landauer formula approach, it is proven that minimal conductivity of order e2/h found experimentally in bilayer graphene is an intrinsic property. For the case of ideal crystals, the conductivity turns out to be equal to e2/2h per valley per spin. A zero-temperature shot noise in bilayer graphene is considered and the Fano factor is calculated. Its value 1–2/π is close to the value 1/3 found earlier for single-layer graphene.  相似文献   

13.
We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero modes, their properties are defined by the unusual chiral BLG quasiparticles, from which they derive. The number of zero mode branches is fixed by the topological vacuum charge of the insulating BLG state. We discuss how these chiral states can manifest experimentally and emphasize their relevance for valleytronics.  相似文献   

14.
The tight-binding model of bilayer graphene is used to find the gap between the conduction and valence bands as a function of both the gate voltage and the doping level by donors or acceptors. The total Hartree energy is minimized and an equation for the gap is obtained. This equation for the ratio of the gap to the chemical potential is determined only by the screening constant. Therefore, the gap is strictly proportional to the gate voltage or the carrier concentration in the absence of donors or acceptors. But in the case where the donors or acceptors are present, the gap demonstrates an asymmetric behavior on the electron and hole sides of the gate bias. A comparison with experimental data obtained by Kuzmenko et al. demonstrates a good agreement.  相似文献   

15.
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.  相似文献   

16.
An expression for the longitudinal dielectric permeability of a nondegenerated electron gas in bilayer graphene is derived. In the calculations, the single-band low-energy approximation is used for the electron spectrum. The dispersion relation and the damping rate of plasma waves in bilayer graphene are found.  相似文献   

17.
We have performed the first experimental investigation of quantum interference corrections to the conductivity of a bilayer graphene structure. A negative magnetoresistance--a signature of weak localization--is observed at different carrier densities, including the electroneutrality region. It is very different, however, from the weak localization in conventional two-dimensional systems. We show that it is controlled not only by the dephasing time, but also by different elastic processes that break the effective time-reversal symmetry and provide intervalley scattering.  相似文献   

18.
We formulate a low energy effective Hamiltonian to study superlattices in bilayer graphene (BLG) using a minimal model which supports quadratic band touching points. We show that a one dimensional (1D) periodic modulation of the chemical potential or the electric field perpendicular to the layers leads to the generation of zero-energy anisotropic massless Dirac fermions and finite energy Dirac points with tunable velocities. The electric field superlattice maps onto a coupled chain model comprised of "topological" edge modes. 2D superlattice modulations are shown to lead to gaps on the mini-Brillouin zone boundary but do not, for certain symmetries, gap out the quadratic band touching point. Such potential variations, induced by impurities and rippling in biased BLG, could lead to subgap modes which are argued to be relevant to understanding transport measurements.  相似文献   

19.
The optical conductivity of graphene and bilayer graphene in quantizing magnetic fields is studied. Both dynamical conductivities, longitudinal and Hall’s, are analytically evaluated. The conductivity peaks are explained in terms of electron transitions. Correspondences between the transition frequencies and the magneto-optical features are established using the theoretical results. The main optical transitions obey the selection rule Δn = 1 with the Landau number n. The Faraday rotation and light transmission in the quantizing magnetic fields are calculated. The effects of temperatures and magnetic fields on the chemical potential are considered.  相似文献   

20.
The electronic structure of the zig-zag bilayer strip is analyzed. The electronic spectraof the bilayer strip is computed. The dependence of the edge state band flatness on thebilayer width is found. The density of states at the Fermi level is analytically computed.It is shown that it has the singularity which depends on the width of the bilayer strip.There is also asymmetry in the density of states below and above the Fermi energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号